Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J R Soc Interface ; 12(111): 20150665, 2015 Oct 06.
Article in English | MEDLINE | ID: mdl-26400199

ABSTRACT

Sap transport in trees has long fascinated scientists, and a vast literature exists on experimental and modelling studies of trees during the growing season when large negative stem pressures are generated by transpiration from leaves. Much less attention has been paid to winter months when trees are largely dormant but nonetheless continue to exhibit interesting flow behaviour. A prime example is sap exudation, which refers to the peculiar ability of sugar maple (Acer saccharum) and related species to generate positive stem pressure while in a leafless state. Experiments demonstrate that ambient temperatures must oscillate about the freezing point before significantly heightened stem pressures are observed, but the precise causes of exudation remain unresolved. The prevailing hypothesis attributes exudation to a physical process combining freeze-thaw and osmosis, which has some support from experimental studies but remains a subject of active debate. We address this knowledge gap by developing the first mathematical model for exudation, while also introducing several essential modifications to this hypothesis. We derive a multiscale model consisting of a nonlinear system of differential equations governing phase change and transport within wood cells, coupled to a suitably homogenized equation for temperature on the macroscale. Numerical simulations yield stem pressures that are consistent with experiments and provide convincing evidence that a purely physical mechanism is capable of capturing exudation.


Subject(s)
Acer/physiology , Freezing , Plant Stems/physiology , Trees/physiology , Algorithms , Biological Transport , Computer Simulation , Models, Theoretical , Oscillometry , Osmosis , Plant Leaves/physiology , Plant Roots/physiology , Plant Transpiration , Seasons , Temperature , Water , Wood/physiology , Xylem/physiology
3.
PLoS One ; 10(4): e0123482, 2015.
Article in English | MEDLINE | ID: mdl-25905725

ABSTRACT

BACKGROUND: Annually, 10 million adults transition through prisons or jails in the United States (US) and the prevalence of HIV among entrants is three times higher than that for the country as a whole. We assessed the potential impact of increasing HIV Testing/Treatment/Retention (HIV-TTR) in the community and within the criminal justice system (CJS) facilities, coupled with sexual risk behavior change, focusing on black men-who-have-sex-with-men, 15-54 years, in Atlanta, USA. METHODS: We modeled the effect of a HIV-TTR strategy on the estimated cumulative number of new (acquired) infections and mortality, and on the HIV prevalence at the end of ten years. We additionally assessed the effect of increasing condom use in all settings. RESULTS: In the Status Quo scenario, at the end of 10 years, the cumulative number of new infections in the community, jail and prison was, respectively, 9246, 77 and 154 cases; HIV prevalence was 10815, 69 and 152 cases, respectively; and the cumulative number of deaths was 2585, 18 and 34 cases, respectively. By increasing HIV-TTR coverage, the cumulative number of new infections could decrease by 15% in the community, 19% in jail, and 8% in prison; HIV prevalence could decrease by 8%, 9% and 7%, respectively; mortality could decrease by 20%, 39% and 18%, respectively. Based on the model results, we have shown that limited use and access to condoms have contributed to the HIV incidence and prevalence in all settings. CONCLUSIONS: Aggressive implementation of a CJS-focused HIV-TTR strategy has the potential to interrupt HIV transmission and reduce mortality, with benefit to the community at large. To maximize the impact of these interventions, retention in treatment, including during the period after jail and prison release, and increased condom use was vital for decreasing the burden of the HIV epidemic in all settings.


Subject(s)
Black or African American , HIV Infections/diagnosis , HIV Infections/prevention & control , Homosexuality, Male , AIDS Serodiagnosis , Georgia , HIV Infections/drug therapy , Humans , Male , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...