Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Rheumatology (Oxford) ; 62(SI2): SI226-SI234, 2023 02 23.
Article in English | MEDLINE | ID: mdl-35961028

ABSTRACT

OBJECTIVES: Four-and-a-half LIM domains 1 (FHL1) is a muscle-specific protein. Autoantibodies against FHL1 were recently discovered in adults with idiopathic inflammatory myopathies (IIMs) and were found to be associated with clinical features and outcomes indicative of increased disease severity. Anti-FHL1 autoantibodies have not been described in children. Here, the prevalence and clinical features associated with anti-FHL1 autoantibodies were examined in a large North American cohort of juvenile patients with IIM. METHODS: Sera from 338 juvenile IIM patients and 91 juvenile healthy controls were screened for anti-FHL1 autoantibodies by ELISA. Clinical characteristics and HLA alleles of those with and without anti-FHL1 autoantibodies were compared among those with juvenile IIM. RESULTS: Anti-FHL1 autoantibodies were present in 10.9% of juvenile IIM patients and 1.1% of controls. The frequency of anti-FHL1 autoantibodies among clinical and serologic subgroups did not differ. A higher percentage of Asian patients had anti-FHL1 autoantibodies (11% vs 0.7%; P = 0.002). Myositis-associated autoantibodies (MAAs) [odds ratio (OR) 2.09 (CI 1.03, 4.32)], anti-Ro52 autoantibodies specifically [OR 4.17 (CI 1.83, 9.37)] and V-sign rash [OR 2.59 (CI 1.22, 5.40)] were associated with anti-FHL1 autoantibodies. There were no differences in other features or markers of disease severity. No HLA associations with anti-FHL1 autoantibodies in Caucasian myositis patients were identified. CONCLUSION: Anti-FHL1 autoantibodies are present in ∼11% of juvenile IIM patients and commonly co-occur with MAAs, including anti-Ro52 autoantibodies. In contrast to adult IIM, anti-FHL1 autoantibodies in juvenile myositis are associated with V-sign rash but not with other distinctive clinical features or worse outcomes.


Subject(s)
Dermatomyositis , Exanthema , Myositis , Adult , Child , Humans , Autoantibodies , Muscle Proteins , Intracellular Signaling Peptides and Proteins , LIM Domain Proteins
2.
Semin Arthritis Rheum ; 51(4): 728-734, 2021 08.
Article in English | MEDLINE | ID: mdl-34144382

ABSTRACT

OBJECTIVES: To define the clinical features of anti-Ku-positive myositis patients and to determine the reliability of the Euroline assay to detect anti-Ku autoantibodies. METHODS: Serum samples were screened for anti-Ku autoantibodies by Euroline and positive samples were confirmed by ELISA. The prevalence and severity of clinical features at onset and during follow-up in patients with anti-Ku-positive myositis were compared to those with dermatomyositis, immune-mediated necrotizing myopathy (IMNM), the antisynthetase syndrome (AS), inclusion body myositis (IBM), anti-U1-RNP-positive myositis, and anti-PM/Scl-positive myositis. RESULTS: 72 (2.9%) of 2475 samples were anti-Ku positive by Euroline using the manufacturer's recommended cutoff of >15. Just 17 (23.6%) of these were confirmed by ELISA and considered anti-Ku-positive for the analysis. Comparators included 169 IMNM, 168 AS, 387 IBM, 20 anti-U1-RNP-positive, and 47 anti-PM/Scl-positive patients. Muscle weakness was a presenting feature in 38% of anti-Ku-positive patients; 81% developed weakness during follow-up. Anti-Ku-positive patients had increased distal weakness compared to the non-IBM comparators. Interstitial lung disease (ILD) was present in 19% of anti-Ku-positive patients at the first visit and eventually developed in 56% of them. Throughout the course of disease, Gottron's papules and/or heliotrope rashes were less common in anti-Ku-positive patients (19%) compared to those with dermatomyositis (94%) or anti-PM/Scl-positive myositis (89%). Anti-Ku-positive patients never developed calcinosis. CONCLUSIONS: The phenotype of anti-Ku positive myositis is distinguished by distal weakness, frequent ILD, infrequent rash, and no calcinosis. When used according to the current manufacturer's instructions, the Euroline assay has a high false-positive rate for anti-Ku autoantibodies.


Subject(s)
Dermatomyositis , Myositis , Autoantibodies , Humans , Phenotype , Reproducibility of Results
3.
Brain Pathol ; 30(2): 261-271, 2020 03.
Article in English | MEDLINE | ID: mdl-31376301

ABSTRACT

Diffuse myofiber necrosis in the context of inflammatory myopathy is the hallmark of immune-mediated necrotizing myopathy (IMNM). We have previously shown that skeletal muscle fibers of IMNM patients may display nonrimmed vacuoles and sarcoplasmic irregularities. The dysfunctional chaperone activity has been linked to the defective assembly of skeletal muscle proteins and their degradation via lysosomes, autophagy and the proteasomal machinery. This study was undertaken to highlight a chaperone-assisted selective autophagy (CASA) pathway, functionally involved in protein homeostasis, cell stress and the immune response in skeletal muscle of IMNM patients. Skeletal muscle biopsies from 54 IMNM patients were analyzed by immunostaining, as well as by qPCR. Eight biopsies of sIBM patients served as pathological controls, and eight biopsies of nondisease control subjects were included. Alteration of autophagy was detectable in all IMNM biopsy samples highlighted via a diffuse sarcoplasmic staining pattern by p62 and LC3 independent of vacuoles. This pattern was at variance with the coarse focal staining pattern mostly confined to rimmed vacuoles in sIBM. Colocalization of p62 with the chaperone proteins HSP70 and αB-crystalline points to the specific targeting of misfolded proteins to the CASA machinery. Bcl2-associated athanogene 3 (BAG3) positivity of these fibers emphasizes the selectivity of autophagy processes and these fibers also express MHC class I sarcolemma. Expression of genes involved in autophagy and endoplasmic reticulum (ER) stress pathways studied here is significantly upregulated in IMNM. We highlight that vacuoles without sarcolemmal features may arise in IMNM muscle biopsies, and they must not be confounded with sIBM-specific vacuoles. Further, we show the activation of selective autophagy and emphasize the role of chaperones in this context. CASA occurs in IMNM muscle, and specific molecular pathways of autophagy differ from the ones in sIBM, with p62 as a unique identifier of this process.


Subject(s)
Autophagy/physiology , Myositis/pathology , Sequestosome-1 Protein/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Molecular Chaperones/metabolism , Necrosis , Young Adult
4.
J Invest Dermatol ; 139(8): 1809-1820.e8, 2019 08.
Article in English | MEDLINE | ID: mdl-30772301

ABSTRACT

Oral mucosa contains a unique transcriptional network that primes oral wounds for rapid resolution in humans. Our previous work identified genes that were consistently upregulated in the oral mucosa and demonstrated that induction of one of the identified genes, transcription factor SOX2, promoted cutaneous wound healing in mice. In this study, we investigated the molecular and cellular mechanisms by which SOX2 accelerates wound healing in skin. RNA-sequencing analysis showed that SOX2 induced a proliferative and wound-activated phenotype in skin keratinocytes prior to wounding. During wound healing, SOX2 induced proliferation of epithelial and connective tissue cells and promoted angiogenesis. Chromatin immunoprecipitation assay revealed that SOX2 directly regulates expression of EGFR ligands, resulting in activation of EGFR. In vitro, skin keratinocytes overexpressing SOX2 promoted cell migration via the EGFR/MEK/ERK pathway. We conclude that induction of SOX2 in skin keratinocytes accelerates cutaneous wound healing by promoting keratinocyte migration and proliferation, and enhancement of angiogenesis via upregulation of EGFR ligands and activation of EGFR/MEK/ERK pathway. Through the identification of putative cutaneous SOX2 targets, such as HBEGF, this study opens venues to determine clinical targets for treatment of skin wounds.


Subject(s)
MAP Kinase Signaling System/genetics , SOXB1 Transcription Factors/metabolism , Skin/injuries , Wound Healing/genetics , Animals , Cell Proliferation/genetics , Cells, Cultured , ErbB Receptors/metabolism , Female , Heparin-binding EGF-like Growth Factor/genetics , Keratinocytes/metabolism , Ligands , Male , Mice , Models, Animal , Primary Cell Culture , RNA-Seq , SOXB1 Transcription Factors/genetics , Signal Transduction/genetics , Skin/cytology , Skin/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...