Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Cells ; 13(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38727313

ABSTRACT

CD133, a cancer stem cell (CSC) marker in tumors, including melanoma, is associated with tumor recurrence, chemoresistance, and metastasis. Patient-derived melanoma cell lines were transduced with a Tet-on vector expressing CD133, generating doxycycline (Dox)-inducible cell lines. Cells were exposed to Dox for 24 h to induce CD133 expression, followed by RNA-seq and bioinformatic analyses, revealing genes and pathways that are significantly up- or downregulated by CD133. The most significantly upregulated gene after CD133 was amphiregulin (AREG), validated by qRT-PCR and immunoblot analyses. Induced CD133 expression significantly increased cell growth, percentage of cells in S-phase, BrdU incorporation into nascent DNA, and PCNA levels, indicating that CD133 stimulates cell proliferation. CD133 induction also activated EGFR and the MAPK pathway. Potential mechanisms highlighting the role(s) of CD133 and AREG in melanoma CSC were further delineated using AREG/EGFR inhibitors or siRNA knockdown of AREG mRNA. Treatment with the EGFR inhibitor gefitinib blocked CD133-induced cell growth increase and MAPK pathway activation. Importantly, siRNA knockdown of AREG reversed the stimulatory effects of CD133 on cell growth, indicating that AREG mediates the effects of CD133 on cell proliferation, thus serving as an attractive target for novel combinatorial therapeutics in melanoma and cancers with overexpression of both CD133 and AREG.


Subject(s)
AC133 Antigen , Amphiregulin , Cell Proliferation , Melanoma , Humans , AC133 Antigen/metabolism , AC133 Antigen/genetics , Amphiregulin/metabolism , Amphiregulin/genetics , Cell Line, Tumor , Cell Proliferation/genetics , ErbB Receptors/metabolism , Gene Expression Regulation, Neoplastic , Melanoma/pathology , Melanoma/metabolism , Melanoma/genetics , Up-Regulation/drug effects
2.
Sci Rep ; 13(1): 6303, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37072468

ABSTRACT

A growing body of evidence links gut microbiota changes with inflammatory bowel disease (IBD), raising the potential benefit of exploiting metagenomics data for non-invasive IBD diagnostics. The sbv IMPROVER metagenomics diagnosis for inflammatory bowel disease challenge investigated computational metagenomics methods for discriminating IBD and nonIBD subjects. Participants in this challenge were given independent training and test metagenomics data from IBD and nonIBD subjects, which could be wither either raw read data (sub-challenge 1, SC1) or processed Taxonomy- and Function-based profiles (sub-challenge 2, SC2). A total of 81 anonymized submissions were received between September 2019 and March 2020. Most participants' predictions performed better than random predictions in classifying IBD versus nonIBD, Ulcerative Colitis (UC) versus nonIBD, and Crohn's Disease (CD) versus nonIBD. However, discrimination between UC and CD remains challenging, with the classification quality similar to the set of random predictions. We analyzed the class prediction accuracy, the metagenomics features by the teams, and computational methods used. These results will be openly shared with the scientific community to help advance IBD research and illustrate the application of a range of computational methodologies for effective metagenomic classification.


Subject(s)
Colitis, Ulcerative , Crohn Disease , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Humans , Inflammatory Bowel Diseases/diagnosis , Inflammatory Bowel Diseases/genetics , Colitis, Ulcerative/diagnosis , Crohn Disease/diagnosis , Crohn Disease/genetics , Metagenomics , Gastrointestinal Microbiome/genetics
3.
Reprod Sci ; 30(8): 2429-2438, 2023 08.
Article in English | MEDLINE | ID: mdl-36788175

ABSTRACT

Endometriosis (ENDO) is a chronic estrogen-dependent gynecological condition that affects reproductive-age women, causing pelvic pain, infertility, and increased risk for ovarian cancer. Diabetes mellitus (DM) is a metabolic disease with significant morbidity and mortality and rising incidence worldwide. The occurrence of DM among ENDO patients remains understudied, despite commonalities in these conditions' immune, inflammatory, and metabolic dysfunctions. This pilot study evaluated whether a subset of women with ENDO manifests DM co-morbidity and if so, whether DM promotes ENDO status. Archived ectopic lesions obtained at ENDO surgery from non-diabetic (ENDO-N; n = 11) and diabetic (ENDO-DM; n = 15) patients were identified by a search of an electronic health database. Retrieved samples were analyzed by immunohistochemistry for markers of proliferation (Ki67, PTEN), steroid receptor signaling (ESR, PGR) and macrophage infiltration (CD68). Immunostaining data were expressed as percentages of immune-positive cells in lesion stroma and epithelium. In lesion stroma, the percentages of nuclear immune-positive cells were higher for ESR2 and lower for PGR-T, in ENDO-DM than ENDO-N patients. The percentages of nuclear immune-positive cells for ESR1 and PTEN tended to be higher and lower, respectively, in ENDO-DM than ENDO-N groups. In lesion glandular epithelium, the percentages of nuclear immune-positive cells were higher for ESR1 and ESR2, in ENDO-DM than ENDO-N groups. ENDO-N lesions had lower percentages of stromal CD68 immune-positive cells than ENDO-DM Type 1 lesions. Findings demonstrate DM in a subset of women with ENDO, which was associated with significant changes in lesion stromal and epithelial nuclear steroid hormone receptor levels, suggestive of disease progression.


Subject(s)
Diabetes Mellitus , Endometriosis , Humans , Female , Endometriosis/metabolism , Pilot Projects , Gene Expression Regulation , Estrogens/metabolism , Signal Transduction , Receptors, Cytoplasmic and Nuclear , Endometrium/metabolism , Diabetes Mellitus/metabolism
4.
NAR Cancer ; 4(1): zcab052, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35047826

ABSTRACT

Ewing sarcoma (EwS) is a small round blue cell tumor and is the second most frequent pediatric bone cancer. 85% of EwS tumors express the fusion oncoprotein EWS-FLI1, the product of a t(11;22) reciprocal translocation. Prior work has indicated that transcription regulation alone does not fully describe the oncogenic capacity of EWS-FLI1, nor does it provide an effective means to stratify patient tumors. Research using EwS cell lines and patient samples has suggested that EWS-FLI1 also disrupts mRNA biogenesis. In this work we both describe the underlying characteristics of mRNA that are aberrantly spliced in EwS tumor samples as well as catalogue mRNA splicing events across other pediatric tumor types. Here, we also use short- and long-read sequencing to identify cis-factors that contribute to splicing profiles we observe in Ewing sarcoma. Our analysis suggests that GC content upstream of cassette exons is a defining factor of mRNA splicing in EwS. We also describe specific splicing events that discriminate EwS tumor samples from the assumed cell of origin, human mesenchymal stem cells derived from bone marrow (hMSC-BM). Finally, we identify specific splicing factors PCBP2, RBMX, and SRSF9 by motif enrichment and confirm findings from tumor samples in EwS cell lines.

5.
PLoS One ; 16(6): e0253170, 2021.
Article in English | MEDLINE | ID: mdl-34133426

ABSTRACT

Clofarabine, an FDA approved purine analog, is used in the treatment of relapsed or refractory acute lymphoblastic leukemia. Clofarabine acts by inhibiting DNA synthesis. We demonstrated that clofarabine may have a novel function though inhibiting CD99, a transmembrane protein highly expressed on Ewing Sarcoma (ES) cells. CD99 is a validated target in ES whose inhibition may lead to a high therapeutic index for patients. Here we present additional data to support the hypothesis that clofarabine acts on CD99 and regulates key signaling pathways in ES. Cellular thermal shift assay indicated a direct interaction between clofarabine and CD99 in ES cell lysates. Clofarabine induced ES cell death does not require clofarabine's conversion to its active form by deoxycytidine kinase. A phosphokinase array screen with clofarabine and a CD99 blocking antibody identified alterations in signaling pathways. CD99 inhibition with clofarabine in ES cells caused rapid and sustained phosphorylation of ERK, MSK, and CREB. However, activation of this pathway did not correlate with clofarabine induced ES cell death. In summary, we demonstrated that clofarabine may activate ERK, MSK, and CREB phosphorylation through CD99 within minutes, however this paradoxical activation and subsequent ES cell death requires additional investigation.


Subject(s)
12E7 Antigen/antagonists & inhibitors , Antimetabolites, Antineoplastic/pharmacology , CREB-Binding Protein/metabolism , Clofarabine/pharmacology , MAP Kinase Signaling System/drug effects , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Sarcoma, Ewing/metabolism , Signal Transduction/drug effects , Blotting, Western , Cell Line, Tumor , Humans , Phosphorylation , Sarcoma, Ewing/drug therapy
6.
Cancer Res ; 81(16): 4230-4241, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34135000

ABSTRACT

AIB1Δ4 is an N-terminally truncated isoform of the oncogene amplified in breast cancer 1 (AIB1) with increased expression in high-grade human ductal carcinoma in situ (DCIS). However, the role of AIB1Δ4 in DCIS malignant progression has not been defined. Here we CRISPR-engineered RNA splice junctions to produce normal and early-stage DCIS breast epithelial cells that expressed only AIB1Δ4. These cells showed enhanced motility and invasion in 3D cell culture. In zebrafish, AIB1Δ4-expressing cells enabled invasion of parental cells when present in a mixed population. In mouse xenografts, a subpopulation of AIB1Δ4 cells mixed with parental cells enhanced tumor growth, recurrence, and lung metastasis. AIB1Δ4 chromatin immunoprecipitation sequencing revealed enhanced binding to regions including peroxisome proliferator-activated receptor (PPAR) and glucocorticoid receptor (GR) genomic recognition sites. H3K27ac and H3K4me1 genomic engagement patterns revealed selective activation of breast cancer-specific enhancer sites by AIB1Δ4. AIB1Δ4 cells displayed upregulated inflammatory response genes and downregulated PPAR signaling gene expression patterns. In the presence of AIB1Δ4 enabler cells, parental cells increased NF-κB and WNT signaling. Cellular cross-talk was inhibited by the PPARγ agonist efatutazone but was enhanced by treatment with the GR agonist dexamethasone. In conclusion, expression of the AIB1Δ4-selective cistrome in a small subpopulation of cells triggers an "enabler" phenotype hallmarked by an invasive transcriptional program and collective malignant progression in a heterogeneous tumor population. SIGNIFICANCE: A minor subset of early-stage breast cancer cells expressing AIB1Δ4 enables bulk tumor cells to become invasive, suggesting that selective eradication of this population could impair breast cancer metastasis.


Subject(s)
Nuclear Receptor Coactivator 3/genetics , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Animals , CRISPR-Cas Systems , Cell Culture Techniques, Three Dimensional , Cell Line, Tumor , Dexamethasone/chemistry , Disease Progression , Electric Impedance , Enhancer Elements, Genetic , Female , Humans , Lung Neoplasms/pathology , Mice , Mice, SCID , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplasm Transplantation , Nuclear Receptor Coactivator 3/chemistry , Phenotype , Protein Isoforms , RNA Splicing , Receptors, Glucocorticoid/metabolism , Signal Transduction , Thiazolidinediones/pharmacology , Zebrafish
7.
Public Health Rep ; 136(3): 327-337, 2021 05.
Article in English | MEDLINE | ID: mdl-33601984

ABSTRACT

INTRODUCTION: Few US studies have examined the usefulness of participatory surveillance during the coronavirus disease 2019 (COVID-19) pandemic for enhancing local health response efforts, particularly in rural settings. We report on the development and implementation of an internet-based COVID-19 participatory surveillance tool in rural Appalachia. METHODS: A regional collaboration among public health partners culminated in the design and implementation of the COVID-19 Self-Checker, a local online symptom tracker. The tool collected data on participant demographic characteristics and health history. County residents were then invited to take part in an automated daily electronic follow-up to monitor symptom progression, assess barriers to care and testing, and collect data on COVID-19 test results and symptom resolution. RESULTS: Nearly 6500 county residents visited and 1755 residents completed the COVID-19 Self-Checker from April 30 through June 9, 2020. Of the 579 residents who reported severe or mild COVID-19 symptoms, COVID-19 symptoms were primarily reported among women (n = 408, 70.5%), adults with preexisting health conditions (n = 246, 70.5%), adults aged 18-44 (n = 301, 52.0%), and users who reported not having a health care provider (n = 131, 22.6%). Initial findings showed underrepresentation of some racial/ethnic and non-English-speaking groups. PRACTICAL IMPLICATIONS: This low-cost internet-based platform provided a flexible means to collect participatory surveillance data on local changes in COVID-19 symptoms and adapt to guidance. Data from this tool can be used to monitor the efficacy of public health response measures at the local level in rural Appalachia.


Subject(s)
COVID-19/epidemiology , Data Collection/methods , Internet-Based Intervention , Public Health Surveillance/methods , Self Report , Symptom Assessment , Adolescent , Adult , Aged , Appalachian Region/epidemiology , Female , Humans , Male , Middle Aged , Patient Participation , SARS-CoV-2 , Young Adult
8.
Sci Rep ; 10(1): 12399, 2020 07 24.
Article in English | MEDLINE | ID: mdl-32709938

ABSTRACT

To explore how airborne microbial patterns change with height above the Earth's surface, we flew NASA's C-20A aircraft on two consecutive days in June 2018 along identical flight paths over the US Sierra Nevada mountain range at four different altitudes ranging from 10,000 ft to 40,000 ft. Bioaerosols were analyzed by metagenomic DNA sequencing and traditional culturing methods to characterize the composition and diversity of atmospheric samples compared to experimental controls. The relative abundance of taxa changed significantly at each altitude sampled, and the diversity profile shifted across the two sampling days, revealing a regional atmospheric microbiome that is dynamically changing. The most proportionally abundant microbial genera were Mycobacterium and Achromobacter at 10,000 ft; Stenotrophomonas and Achromobacter at 20,000 ft; Delftia and Pseudoperonospora at 30,000 ft; and Alcaligenes and Penicillium at 40,000 ft. Culture-based detections also identified viable Bacillus zhangzhouensis, Bacillus pumilus, and Bacillus spp. in the upper troposphere. To estimate bioaerosol dispersal, we developed a human exposure likelihood model (7-day forecast) using general aerosol characteristics and measured meteorological conditions. By coupling metagenomics to a predictive atmospheric model, we aim to set the stage for field campaigns that monitor global bioaerosol emissions and impacts.

9.
Mol Med Rep ; 21(3): 1667-1675, 2020 03.
Article in English | MEDLINE | ID: mdl-32016454

ABSTRACT

Despite Ewing sarcoma (ES) being the second most common pediatric malignancy of bone and soft tissue, few novel therapeutic approaches have been introduced over the past few decades. ES contains a pathognomonic chromosomal translocation that leads to a fusion protein between EWSR1 and an ets family member, most often FLI1. EWS­FLI1 is the most common type of fusion protein and is a well­vetted therapeutic target. A small molecule inhibitor of EWS­FLI1, YK­4­279 (YK) was developed with the intention to serve as a targeted therapy option for patients with ES. The present study investigated resistance mechanisms by developing an ES cell line specifically resistant to YK. The ES cell line A4573 was treated with YK to create resistant cells by long term continuous exposure. The results revealed that resistance in A4573 was robust and sustainable, with a >27­fold increase in IC50 lasting up to 16 weeks in the absence of the compound. Resistant ES cells were still sensitive to standard of care drugs, including doxorubicin, vincristine and etoposide, which may be valuable in future combination treatments in the clinic. Resistant ES cells revealed an increased expression of CD99. RNA sequencing and qPCR validation of resistant ES cells confirmed an increased expression of ANO1, BRSK2 and IGSF21, and a reduced expression of COL24A1, PRSS23 and RAB38 genes. A functional association between these genes and mechanism of resistance remains to be investigated. The present study created a cell line to investigate YK resistance.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/genetics , Indoles/pharmacology , Oncogene Proteins, Fusion/antagonists & inhibitors , Oncogene Proteins, Fusion/genetics , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Protein c-fli-1/antagonists & inhibitors , Proto-Oncogene Protein c-fli-1/genetics , RNA-Binding Protein EWS/antagonists & inhibitors , RNA-Binding Protein EWS/genetics , Sarcoma, Ewing/genetics , 12E7 Antigen/genetics , 12E7 Antigen/metabolism , Biomarkers, Tumor , Cell Line, Tumor , Dose-Response Relationship, Drug , Gene Expression , Humans
10.
Proc Natl Acad Sci U S A ; 117(6): 3301-3306, 2020 02 11.
Article in English | MEDLINE | ID: mdl-31974311

ABSTRACT

Genome-scale technologies have enabled mapping of the complex molecular networks that govern cellular behavior. An emerging theme in the analyses of these networks is that cells use many layers of regulatory feedback to constantly assess and precisely react to their environment. The importance of complex feedback in controlling the real-time response to external stimuli has led to a need for the next generation of cell-based technologies that enable both the collection and analysis of high-throughput temporal data. Toward this end, we have developed a microfluidic platform capable of monitoring temporal gene expression from over 2,000 promoters. By coupling the "Dynomics" platform with deep neural network (DNN) and associated explainable artificial intelligence (XAI) algorithms, we show how machine learning can be harnessed to assess patterns in transcriptional data on a genome scale and identify which genes contribute to these patterns. Furthermore, we demonstrate the utility of the Dynomics platform as a field-deployable real-time biosensor through prediction of the presence of heavy metals in urban water and mine spill samples, based on the the dynamic transcription profiles of 1,807 unique Escherichia coli promoters.


Subject(s)
Biosensing Techniques/instrumentation , Environmental Monitoring , Gene Expression Profiling , Machine Learning , Promoter Regions, Genetic/genetics , Databases, Genetic , Environmental Monitoring/instrumentation , Environmental Monitoring/methods , Equipment Design , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Profiling/instrumentation , Gene Expression Profiling/methods , Genes, Bacterial/genetics , Genomics/instrumentation , Genomics/methods , High-Throughput Screening Assays , Metals, Heavy/toxicity , Microfluidic Analytical Techniques/instrumentation , Transcriptome/genetics
11.
Cell Death Differ ; 27(7): 2143-2157, 2020 07.
Article in English | MEDLINE | ID: mdl-31959914

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) and its evolution to inflammatory steatohepatitis (NASH) are the most common causes of chronic liver damage and transplantation that are reaching epidemic proportions due to the upraising incidence of metabolic syndrome, obesity, and diabetes. Currently, there is no approved treatment for NASH. The mitochondrial citrate carrier, Slc25a1, has been proposed to play an important role in lipid metabolism, suggesting a potential role for this protein in the pathogenesis of this disease. Here, we show that Slc25a1 inhibition with a specific inhibitor compound, CTPI-2, halts salient alterations of NASH reverting steatosis, preventing the evolution to steatohepatitis, reducing inflammatory macrophage infiltration in the liver and adipose tissue, while starkly mitigating obesity induced by a high-fat diet. These effects are differentially recapitulated by a global ablation of one copy of the Slc25a1 gene or by a liver-targeted Slc25a1 knockout, which unravel dose-dependent and tissue-specific functions of this protein. Mechanistically, through citrate-dependent activities, Slc25a1 inhibition rewires the lipogenic program, blunts signaling from peroxisome proliferator-activated receptor gamma, a key regulator of glucose and lipid metabolism, and inhibits the expression of gluconeogenic genes. The combination of these activities leads not only to inhibition of lipid anabolic processes, but also to a normalization of hyperglycemia and glucose intolerance as well. In summary, our data show for the first time that Slc25a1 serves as an important player in the pathogenesis of fatty liver disease and thus, provides a potentially exploitable and novel therapeutic target.


Subject(s)
Carrier Proteins/antagonists & inhibitors , Glucose Intolerance/complications , Inflammation/complications , Mitochondria/metabolism , Non-alcoholic Fatty Liver Disease/complications , Acetyl Coenzyme A/metabolism , Animals , Blood Glucose/metabolism , Carrier Proteins/metabolism , Cell Polarity , Citric Acid/metabolism , Diet, High-Fat , Disease Models, Animal , Down-Regulation , Fasting/blood , Gluconeogenesis , Glucose Intolerance/blood , Hepatomegaly/blood , Hepatomegaly/complications , Hepatomegaly/diagnostic imaging , Humans , Hyperglycemia/blood , Hyperglycemia/complications , Inflammation/blood , Insulin Resistance , Interleukin-6/biosynthesis , Lipogenesis , Liver/diagnostic imaging , Liver/metabolism , Liver/pathology , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/diagnostic imaging , Obesity/blood , Obesity/complications , Phenotype , Time Factors , Triglycerides/metabolism , Tumor Necrosis Factor-alpha/biosynthesis
12.
EMBO Rep ; 21(1): e48741, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31788936

ABSTRACT

Transcription factors critical for the transition of normal breast epithelium to ductal carcinoma in situ (DCIS) and invasive breast cancer are not clearly defined. Here, we report that the expression of a subset of YAP-activated and YAP-repressed genes in normal mammary and early-stage breast cancer cells is dependent on the nuclear co-activator AIB1. Gene expression, sequential ChIP, and ChIP-seq analyses show that AIB1 and YAP converge upon TEAD for transcriptional activation and repression. We find that AIB1-YAP repression of genes at the 1q21.3 locus is mediated by AIB1-dependent recruitment of ANCO1, a tumor suppressor whose expression is progressively lost during breast cancer progression. Reducing ANCO1 reverts AIB1-YAP-dependent repression, increases cell size, and enhances YAP-driven aberrant 3D growth. Loss of endogenous ANCO1 occurs during DCIS xenograft progression, a pattern associated with poor prognosis in human breast cancer. We conclude that increased expression of AIB1-YAP co-activated targets coupled with a loss of normal ANCO1 repression is critical to patterns of gene expression that mediate malignant progression of early-stage breast cancer.


Subject(s)
Breast Neoplasms , Nuclear Receptor Coactivator 3/genetics , Repressor Proteins/genetics , Breast , Breast Neoplasms/genetics , Humans , Nuclear Receptor Coactivator 3/metabolism
13.
Sci Rep ; 9(1): 18199, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31796844

ABSTRACT

Liver cancer is associated with genetic mutations caused by environmental exposures, including occupational exposure to alpha radiation emitted by plutonium. We used whole exome sequencing (WES) to characterize somatic mutations in 3 histologically distinct primary liver tumors (angiosarcoma of the liver (ASL), cholangiocarcinoma (CCA) and hepatocellular carcinoma (HCC)) from Mayak worker subjects occupationally exposed to ionizing radiation (IR) to investigate the contribution of IR to the mutational landscape of liver cancer. DNA sequence analysis revealed these tumors harbor an excess of deletions, with a deletions:substitutions ratio similar to that previously reported in radiation-associated tumors. These tumors were also enriched for clustered mutations, a signature of radiation exposure. Multiple tumors displayed similarities in abrogated gene pathways including actin cytoskeletal signaling and DNA double-strand break (DSB) repair. WES identified novel candidate driver genes in ASL involved in angiogenesis and PIK3CA/AKT/mTOR signaling. We confirmed known driver genes of CCA, and identified candidate driver genes involved in chromatin remodeling. In HCC tumors we validated known driver genes, and identified novel putative driver genes involved in Wnt/ß-catenin signaling, chromatin remodeling, PIK3CA/AKT/mTOR signaling, and angiogenesis. This pilot study identifies several novel candidate driver mutations that are likely to be caused by IR exposure, and provides the first data on the mutational landscape of liver cancer after IR exposure.


Subject(s)
Carcinoma, Hepatocellular/genetics , Cholangiocarcinoma/genetics , Hemangiosarcoma/genetics , Liver Neoplasms/genetics , Neoplasms, Radiation-Induced/genetics , Occupational Diseases/genetics , Aged , Carcinoma, Hepatocellular/pathology , Cholangiocarcinoma/pathology , Cohort Studies , DNA Mutational Analysis , Female , Hemangiosarcoma/pathology , Humans , Liver/pathology , Liver/radiation effects , Liver Neoplasms/pathology , Male , Middle Aged , Mutation/radiation effects , Neoplasms, Radiation-Induced/pathology , Occupational Diseases/pathology , Occupational Exposure/adverse effects , Pilot Projects , Radioactive Waste/adverse effects , Russia , Waste Disposal Facilities , Exome Sequencing
14.
Dev Cell ; 51(1): 113-128.e9, 2019 10 07.
Article in English | MEDLINE | ID: mdl-31447265

ABSTRACT

Employing inducible genetically engineered and orthotopic mouse models, we demonstrate a key role for transcriptional regulator Yap in maintenance of Kras-mutant pancreatic tumors. Integrated transcriptional and metabolomics analysis reveals that Yap transcribes Myc and cooperates with Myc to maintain global transcription of metabolic genes. Yap loss triggers acute metabolic stress, which causes tumor regression while inducing epigenetic reprogramming and Sox2 upregulation in a subset of pancreatic neoplastic cells. Sox2 restores Myc expression and metabolic homeostasis in Yap-deficient neoplastic ductal cells, which gradually re-differentiate into acinar-like cells, partially restoring pancreatic parenchyma in vivo. Both the short-term and long-term effects of Yap loss in inducing cell death and re-differentiation, respectively, are blunted in advanced, poorly differentiated p53-mutant pancreatic tumors. Collectively, these findings reveal a highly dynamic and interdependent metabolic, transcriptional, and epigenetic regulatory network governed by Yap, Myc, Sox2, and p53 that dictates pancreatic tumor metabolism, growth, survival, and differentiation.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Adenocarcinoma/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Cell Cycle Proteins/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , SOXB1 Transcription Factors/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Cell Differentiation , Cell Lineage , Cell Proliferation , DNA Methylation , Disease Models, Animal , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , HCT116 Cells , Homeostasis , Humans , Mice , Transcription Factors/metabolism , YAP-Signaling Proteins
15.
Mol Cancer Ther ; 18(12): 2220-2232, 2019 12.
Article in English | MEDLINE | ID: mdl-31451564

ABSTRACT

CDK4/6 inhibitors are used in the treatment of advanced estrogen receptor (ER)(+) breast cancer. Their efficacy in ER(-) and early-stage breast cancer is currently under investigation. Here, we show that palbociclib, a CDK4/6 inhibitor, can inhibit both progression of ductal carcinoma in situ (DCIS) and growth of invasive disease in both an ER(-) basal breast cancer model (MCFDCIS) and an ER(+) luminal model (MCF7 intraductal injection). In MCFDCIS cells, palbociclib repressed cell-cycle gene expression, inhibited proliferation, induced senescence, and normalized tumorspheres formed in Matrigel while the formation of acini by normal mammary epithelial cells (MCF10A) was not affected. Palbociclib treatment of mice with MCFDCIS tumors inhibited their malignant progression and reduced proliferation of invasive lesions. Transcriptomic analysis of the tumor and stromal cell compartments showed that cell cycle and senescence genes, and MUC16, an ovarian cancer biomarker gene, were repressed during treatment. Knockdown of MUC16 in MCFDCIS cells inhibited proliferation of invasive lesions but not progression of DCIS. After cessation of palbociclib treatment genes associated with differentiation, for example, P63, inflammation, IFNγ response, and antigen processing and presentation remained suppressed in the tumor and surrounding stroma. We conclude that palbociclib can prevent progression of DCIS and is antiproliferative in ER(-) invasive disease mediated in part via MUC16. Lasting effects of CDK4/6 inhibition after drug withdrawal on differentiation and the immune response could impact the approach to treatment of early-stage ER(-) breast cancer.


Subject(s)
Breast Neoplasms/drug therapy , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 4/therapeutic use , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Cyclin-Dependent Kinase 6/therapeutic use , Animals , Cell Proliferation , Female , Humans , Mice , Mice, Nude , Neoplasm Staging
16.
Nucleic Acids Res ; 47(18): 9619-9636, 2019 10 10.
Article in English | MEDLINE | ID: mdl-31392992

ABSTRACT

Connections between epigenetic reprogramming and transcription or splicing create novel mechanistic networks that can be targeted with tailored therapies. Multiple subunits of the chromatin remodeling BAF complex, including ARID1A, play a role in oncogenesis, either as tumor suppressors or oncogenes. Recent work demonstrated that EWS-FLI1, the oncogenic driver of Ewing sarcoma (ES), plays a role in chromatin regulation through interactions with the BAF complex. However, the specific BAF subunits that interact with EWS-FLI1 and the precise role of the BAF complex in ES oncogenesis remain unknown. In addition to regulating transcription, EWS-FLI1 also alters the splicing of many mRNA isoforms, but the role of splicing modulation in ES oncogenesis is not well understood. We have identified a direct connection between the EWS-FLI1 protein and ARID1A isoform protein variant ARID1A-L. We demonstrate here that ARID1A-L is critical for ES maintenance and supports oncogenic transformation. We further report a novel feed-forward cycle in which EWS-FLI1 leads to preferential splicing of ARID1A-L, promoting ES growth, and ARID1A-L reciprocally promotes EWS-FLI1 protein stability. Dissecting this interaction may lead to improved cancer-specific drug targeting.


Subject(s)
Carcinogenesis/genetics , Nuclear Proteins/genetics , Oncogene Proteins, Fusion/genetics , Proto-Oncogene Protein c-fli-1/genetics , RNA-Binding Protein EWS/genetics , Sarcoma, Ewing/genetics , Transcription Factors/genetics , Alternative Splicing/genetics , Cell Line, Tumor , Chromatin Assembly and Disassembly/genetics , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Epigenesis, Genetic/genetics , Gene Expression Regulation, Neoplastic , Humans , Nuclear Proteins/chemistry , Oncogene Proteins, Fusion/chemistry , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Stability , Proto-Oncogene Protein c-fli-1/chemistry , RNA-Binding Protein EWS/chemistry , Sarcoma, Ewing/pathology , Transcription Factors/chemistry
17.
Clin Cancer Res ; 25(16): 5167-5176, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31182435

ABSTRACT

PURPOSE: Transcription factors are commonly deregulated in cancer, and they have been widely considered as difficult to target due to their nonenzymatic mechanism of action. Altered expression levels of members of the ETS-transcription factors are often observed in many different tumors, including lymphomas. Here, we characterized two small molecules, YK-4-279 and its clinical derivative, TK-216, targeting ETS factors via blocking the protein-protein interaction with RNA helicases, for their antilymphoma activity. EXPERIMENTAL DESIGN: The study included preclinical in vitro activity screening on a large panel of cell lines, both as single agent and in combination; validation experiments on in vivo models; and transcriptome and coimmunoprecipitation experiments. RESULTS: YK-4-279 and TK-216 demonstrated an antitumor activity across several lymphoma cell lines, which we validated in vivo. We observed synergistic activity when YK-4-279 and TK-216 were combined with the BCL2 inhibitor venetoclax and with the immunomodulatory drug lenalidomide. YK-4-279 and TK-216 interfere with protein interactions of ETS family members SPIB, in activated B-cell-like type diffuse large B-cell lymphomas, and SPI1, in germinal center B-cell-type diffuse large B-cell lymphomas. CONCLUSIONS: The ETS inhibitor YK-4-279 and its clinical derivative TK-216 represent a new class of agents with in vitro and in vivo antitumor activity in lymphomas. Although their detailed mechanism of action needs to be fully defined, in DLBCL they might act by targeting subtype-specific essential transcription factors.


Subject(s)
Antineoplastic Agents/pharmacology , Indoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-ets/analysis , Animals , Apoptosis/drug effects , Biomarkers, Tumor , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Drug Synergism , Gene Expression Profiling , Humans , Immunohistochemistry , Lymphoma/drug therapy , Lymphoma/genetics , Lymphoma/metabolism , Lymphoma/pathology , Mice , Prognosis , Protein Binding , Transcriptome , Xenograft Model Antitumor Assays
18.
Mol Cancer Res ; 17(9): 1815-1827, 2019 09.
Article in English | MEDLINE | ID: mdl-31164413

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease with limited and, very often, ineffective medical and surgical therapeutic options. The treatment of patients with advanced unresectable PDAC is restricted to systemic chemotherapy, a therapeutic intervention to which most eventually develop resistance. Recently, nab-paclitaxel (n-PTX) has been added to the arsenal of first-line therapies, and the combination of gemcitabine and n-PTX has modestly prolonged median overall survival. However, patients almost invariably succumb to the disease, and little is known about the mechanisms underlying n-PTX resistance. Using the conditionally reprogrammed (CR) cell approach, we established and verified continuously growing cell cultures from treatment-naïve patients with PDAC. To study the mechanisms of primary drug resistance, nab-paclitaxel-resistant (n-PTX-R) cells were generated from primary cultures and drug resistance was verified in vivo, both in zebrafish and in athymic nude mouse xenograft models. Molecular analyses identified the sustained induction of c-MYC in the n-PTX-R cells. Depletion of c-MYC restored n-PTX sensitivity, as did treatment with either the MEK inhibitor, trametinib, or a small-molecule activator of protein phosphatase 2a. IMPLICATIONS: The strategies we have devised, including the patient-derived primary cells and the unique, drug-resistant isogenic cells, are rapid and easily applied in vitro and in vivo platforms to better understand the mechanisms of drug resistance and for defining effective therapeutic options on a patient by patient basis.


Subject(s)
Albumins/pharmacology , Carcinoma, Pancreatic Ductal/genetics , Drug Resistance, Neoplasm , Paclitaxel/pharmacology , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins c-myc/genetics , Up-Regulation , Aged , Aged, 80 and over , Albumins/therapeutic use , Animals , Carcinoma, Pancreatic Ductal/drug therapy , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Mice , Neoplasm Transplantation , Paclitaxel/therapeutic use , Pancreatic Neoplasms/drug therapy , Primary Cell Culture , Tumor Cells, Cultured , Zebrafish , Pancreatic Neoplasms
19.
Genes (Basel) ; 10(4)2019 03 27.
Article in English | MEDLINE | ID: mdl-30934798

ABSTRACT

Hematopoietic cells are continuously replenished from progenitor cells that reside in the bone marrow. To evaluate molecular changes during this process, we analyzed the transcriptomes of freshly harvested human bone marrow progenitor (lineage-negative) and differentiated (lineage-positive) cells by single-molecule real-time (SMRT) full-length RNA-sequencing. This analysis revealed a ~5-fold higher number of transcript isoforms than previously detected and showed a distinct composition of individual transcript isoforms characteristic for bone marrow subpopulations. A detailed analysis of messenger RNA (mRNA) isoforms transcribed from the ANXA1 and EEF1A1 loci confirmed their distinct composition. The expression of proteins predicted from the transcriptome analysis was evaluated by mass spectrometry and validated previously unknown protein isoforms predicted e.g., for EEF1A1. These protein isoforms distinguished the lineage negative cell population from the lineage positive cell population. Finally, transcript isoforms expressed from paralogous gene loci (e.g., CFD, GATA2, HLA-A, B, and C) also distinguished cell subpopulations but were only detectable by full-length RNA sequencing. Thus, qualitatively distinct transcript isoforms from individual genomic loci separate bone marrow cell subpopulations indicating complex transcriptional regulation and protein isoform generation during hematopoiesis.


Subject(s)
Cell Lineage/genetics , High-Throughput Nucleotide Sequencing , RNA, Messenger/genetics , Transcriptome/genetics , Alternative Splicing/genetics , Bone Marrow Cells/metabolism , Genomics/methods , Humans , Single Molecule Imaging/methods , Exome Sequencing/methods
20.
Cancer Immunol Res ; 7(2): 230-243, 2019 02.
Article in English | MEDLINE | ID: mdl-30563830

ABSTRACT

Targeted monoclonal antibody therapy is a promising therapeutic strategy for cancer, and antibody-dependent cell-mediated cytotoxicity (ADCC) represents a crucial mechanism underlying these approaches. The majority of patients have limited responses to monoclonal antibody therapy due to the development of resistance. Models of ADCC provide a system for uncovering immune-resistance mechanisms. We continuously exposed epidermal growth factor receptor (EGFR+) A431 cells to KIR-deficient NK92-CD16V effector cells and the anti-EGFR cetuximab. Persistent ADCC exposure yielded ADCC-resistant cells (ADCCR1) that, compared with control ADCC-sensitive cells (ADCCS1), exhibited reduced EGFR expression, overexpression of histone- and interferon-related genes, and a failure to activate NK cells, without evidence of epithelial-to-mesenchymal transition. These properties gradually reversed following withdrawal of ADCC selection pressure. The development of resistance was associated with lower expression of multiple cell-surface molecules that contribute to cell-cell interactions and immune synapse formation. Classic immune checkpoints did not modulate ADCC in this unique model system of immune resistance. We showed that the induction of ADCC resistance involves genetic and epigenetic changes that lead to a general loss of target cell adhesion properties that are required for the establishment of an immune synapse, killer cell activation, and target cell cytotoxicity.


Subject(s)
Antibody-Dependent Cell Cytotoxicity/immunology , Models, Biological , Animals , Antibody-Dependent Cell Cytotoxicity/genetics , Cell Line, Tumor , Disease Models, Animal , ErbB Receptors/genetics , ErbB Receptors/metabolism , Female , Heterografts , Histones/metabolism , Humans , Interferons/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Lymphocyte Activation/immunology , Mice , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/pathology , Phosphorylation , Proteome , Proteomics/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...