Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Biol ; 226(19)2023 10 01.
Article in English | MEDLINE | ID: mdl-37671466

ABSTRACT

Arboreal animals commonly use dynamic gap-crossing behaviors such as jumping. In snakes, however, most species studied to date only employ the quasi-static cantilever crawl, which involves a whole-body reach. One exception is the paradise tree snake (Chrysopelea paradisi), which exhibits kinematic changes as gap distance increases, culminating in dynamic behaviors that are kinematically indistinguishable from those used to launch glides. Because Chrysopelea uses dynamic behaviors when bridging gaps without gliding, we hypothesized that such dynamic behaviors evolved ancestrally to Chrysopelea. To test this predicted occurrence of dynamic behaviors in closely related taxa, we studied gap bridging locomotion in the genus Dendrelaphis, which is the sister lineage of Chysopelea. We recorded 20 snakes from two species (D. punctulatus and D. calligastra) crossing gaps of increasing size, and analyzed their 3D kinematics. We found that, like C. paradisi, both species of Dendrelaphis modulate their use of dynamic behaviors in response to gap distance, but Dendrelaphis exhibit greater inter-individual variation. Although all three species displayed the use of looped movements, the highly stereotyped J-loop movement of Chrysopelea was not observed in Dendrelaphis. These results support the hypothesis that Chrysopelea may have co-opted and refined an ancestral behavior for crossing gaps for the novel function of launching a glide. Overall, these data demonstrate the importance of gap distance in governing behavior and kinematics during arboreal gap crossing.


Subject(s)
Colubridae , Sports , Animals , Flight, Animal/physiology , Snakes/physiology , Colubridae/physiology , Locomotion/physiology , Biomechanical Phenomena , Trees
2.
J Exp Zool A Ecol Integr Physiol ; 333(1): 60-73, 2020 01.
Article in English | MEDLINE | ID: mdl-31111626

ABSTRACT

The discontinuity of the canopy habitat is one of the principle differences between the terrestrial and arboreal environments. An animal's ability to cross gaps-to move from one support to another across an empty space-is influenced by both the physical structure of the gap and the animal's locomotor capabilities. In this review, we discuss the range of behaviors animals use to cross gaps. Focusing on the biomechanics of these behaviors, we suggest broad categorizations that facilitate comparisons between taxa. We also discuss the importance of gap distance in determining crossing behavior, and suggest several mechanical characteristics that may influence behavior choice, including the degree to which a behavior is dynamic, and whether or not the behavior is airborne. Overall, gap crossing is an important aspect of arboreal locomotion that deserves further in-depth attention, particularly given the ubiquity of gaps in the arboreal habitat.


Subject(s)
Behavior, Animal/physiology , Locomotion/physiology , Animals , Biomechanical Phenomena , Choice Behavior , Ecosystem
SELECTION OF CITATIONS
SEARCH DETAIL
...