Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(7): e2306775121, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38315850

ABSTRACT

Limiting global warming to 2 °C requires urgent action on land-based mitigation. This study evaluates the biogeochemical and biogeophysical implications of two alternative land-based mitigation scenarios that aim to achieve the same radiative forcing. One scenario is primarily driven by bioenergy expansion (SSP226Lu-BIOCROP), while the other involves re/afforestation (SSP126Lu-REFOREST). We find that overall, SSP126Lu-REFOREST is a more efficient strategy for removing CO2 from the atmosphere by 2100, resulting in a net carbon sink of 242 ~ 483 PgC with smaller uncertainties compared to SSP226Lu-BIOCROP, which exhibits a wider range of -78 ~ 621 PgC. However, SSP126Lu-REFOREST leads to a relatively warmer planetary climate than SSP226Lu-BIOCROP, and this relative warming can be intensified in certain re/afforested regions where local climates are not favorable for tree growth. Despite the cooling effect on a global scale, SSP226Lu-BIOCROP reshuffles regional warming hotspots, amplifying summer temperatures in vulnerable tropical regions such as Central Africa and Southeast Asia. Our findings highlight the need for strategic land use planning to identify suitable regions for re/afforestation and bioenergy expansion, thereby improving the likelihood of achieving the intended climate mitigation outcomes.

2.
Sci Data ; 10(1): 201, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37041220

ABSTRACT

Water usage is closely linked with societal goals that are both local and global in scale, such as sustainable development and economic growth. It is therefore of value, particularly for long-term planning, to understand how future sectoral water usage could evolve on a global scale at fine resolution. Additionally, future water usage could be strongly shaped by global forces, such as socioeconomic and climate change, and the multi-sector dynamic interactions those forces create. We generate a novel global gridded monthly sectoral water withdrawal and consumption dataset at 0.5° resolution for 2010-2100 for a diverse range of 75 scenarios. The scenarios are harmonized with the five Shared Socioeconomic Pathways (SSPs) and four Representative Concentration Pathways (RCPs) scenarios to support its usage in studies evaluating the implications of uncertain human and earth system change for future global and regional dynamics. To generate the data, we couple the Global Change Analysis Model (GCAM) with a land use spatial downscaling model (Demeter), a global hydrologic framework (Xanthos), and a water withdrawal downscaling model (Tethys).


Subject(s)
Climate Change , Water , Humans , Socioeconomic Factors , Forecasting
4.
Sci Rep ; 11(1): 17917, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34504123

ABSTRACT

Governance measures such as restrictions on groundwater pumping and adjustments to sectoral water pricing have been suggested as response strategies to curtail recent increases in groundwater pumping and enhance sustainable water use. However, little is known about the impacts of such sustainability strategies. We investigate the implications of such measures, with the United States (U.S.) as an example. Using the Global Change Analysis Model (GCAM) with state-level details in the U.S., we find that the combination of these two governance measures can drastically alter agricultural production in the U.S. The Southwest stands to lose upwards of 25% of their total agricultural production, much of which is compensated for by production increases in river basins on the east coast of the U.S. The implementation of future sustainable water governance measures will require additional investments that allow farmers to maximize production while minimizing water withdrawals to avoid potentially detrimental revenue losses.

5.
Sci Data ; 7(1): 320, 2020 10 02.
Article in English | MEDLINE | ID: mdl-33009403

ABSTRACT

Global future land use (LU) is an important input for Earth system models for projecting Earth system dynamics and is critical for many modeling studies on future global change. Here we generated a new global gridded LU dataset using the Global Change Analysis Model (GCAM) and a land use spatial downscaling model, named Demeter, under the five Shared Socioeconomic Pathways (SSPs) and four Representative Concentration Pathways (RCPs) scenarios. Compared to existing similar datasets, the presented dataset has a higher spatial resolution (0.05° × 0.05°) and spreads under a more comprehensive set of SSP-RCP scenarios (in total 15 scenarios), and considers uncertainties from the forcing climates. We compared our dataset with the Land Use Harmonization version 2 (LUH2) dataset and found our results are in general spatially consistent with LUH2. The presented dataset will be useful for global Earth system modeling studies, especially for the analysis of the impacts of land use and land cover change and socioeconomics, as well as the characterizing the uncertainties associated with these impacts.

6.
Nat Commun ; 11(1): 3632, 2020 07 20.
Article in English | MEDLINE | ID: mdl-32686671

ABSTRACT

Water stressed regions rely heavily on the import of water-intensive goods to offset insufficient food production driven by socioeconomic and environmental factors. The water embedded in these traded commodities, virtual water, has received increasing interest in the scientific community. However, comprehensive future projections of virtual water trading remain absent. Here we show, for the first time, changes over the 21st century in the amount of various water types required to meet international agricultural demands. Accounting for evolution in socioeconomic and climatic conditions, we estimate future interregional virtual water trading and find trading of renewable water sources may triple by 2100 while nonrenewable groundwater trading may at least double. Basins in North America, and the La Plata and Nile Rivers are found to contribute extensively to virtual water exports, while much of Africa, India, and the Middle East relies heavily on virtual water imports by the end of the century.

SELECTION OF CITATIONS
SEARCH DETAIL