Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Alzheimers Dis ; 96(4): 1593-1607, 2023.
Article in English | MEDLINE | ID: mdl-38007646

ABSTRACT

BACKGROUND: The need for early diagnosis biomarkers in Alzheimer's disease (AD) is growing. Only few studies have reported gustatory dysfunctions in AD using subjective taste tests. OBJECTIVE: The main purpose of the study was to explore gustatory functions using subjective taste tests and recordings of gustatory evoked potentials (GEPs) for sucrose solution in patients with minor or major cognitive impairment (CI) linked to AD, and to compare them with healthy controls. The secondary objective was to evaluate the relationships between GEPs and the results of cognitive assessments and fasting blood samples. METHODS: A total of 45 subjects (15 healthy subjects, 15 minor CI patients, 15 major CI patients) were included to compare their gustatory functions and brain activity by recording GEPs in response to a sucrose stimulation. CI groups were combined in second analyses in order to keep a high power in the study. Correlations were made with cognitive scores and hormone levels (ghrelin, leptin, insulin, serotonin). RESULTS: Increased P1 latencies and reduced N1 amplitudes were observed in minor or major patients compared to controls. GEPs were undetectable in 6 major and 4 minor CI patients. Thresholds for sucrose detection were significantly higher in the major CI group than in controls or the minor CI group. No correlation was found with hormone levels. CONCLUSIONS: The cortical processing of sensory taste information seems to be altered in patients with minor or major CI linked to AD. This disturbance was identifiable with subjective taste tests only later, at the major CI stage.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Taste Perception/physiology , Alzheimer Disease/complications , Evoked Potentials , Cognitive Dysfunction/complications , Sucrose , Hormones
2.
Article in English | MEDLINE | ID: mdl-36656675

ABSTRACT

Aims: Part of hypothalamic (mediobasal hypothalamus [MBH]) neurons detect changes in blood glucose levels that in turn coordinate the vagal control of insulin secretion. This control cascade requires the production of mitochondrial reactive oxygen species (mROS), which is altered in models of obesity and insulin resistance. Obese, insulin-resistant Zücker rats are characterized by hypothalamic hypersensitivity to glucose. This initiates an abnormal vagus-induced insulin secretion, associated with an overproduction of mROS in response to a low glucose dose. Here, we hypothesized that ghrelin, known to buffer reactive oxygen species (ROS) via mitochondrial function, may be a major component of the hypothalamic glucose hypersensitivity in the hypoghrelinemic obese Zücker rat. Results: Hypothalamic glucose hypersensitivity-induced insulin secretion of Zücker obese rats was reversed by ghrelin pretreatment. The overproduction of MBH mROS in response to a low glucose load no longer occurred in obese rats that had previously received the cerebral ghrelin infusion. This decrease in mROS production was accompanied by a normalization of oxidative phosphorylation (OXPHOS). Conversely, blocking the action of ghrelin with a growth hormone secretagogue receptor antagonist in a model of hyperghrelinemia (fasted rats) completely restored hypothalamic glucose sensing-induced insulin secretion that was almost absent in this physiological situation. Accordingly, ROS signaling and mitochondrial activity were increased by the ghrelin receptor antagonist. Innovation: These results demonstrate for the first time that ghrelin addressed only to the brain could have a protective effect on the defective control of insulin secretion in the insulin-resistant, hypoghrelinemic obese subject. Conclusions: Ghrelin, through its action on OXPHOS, modulates mROS signaling in response to cerebral hyperglycemia and the consequent vagal control of insulin secretion. In insulin-resistant obese states, brain hypoghrelinemia could be responsible for the nervous defect in insulin secretion.

3.
Diabetes Metab Syndr ; 13(4): 2489-2494, 2019.
Article in English | MEDLINE | ID: mdl-31405666

ABSTRACT

AIMS: GLP-1 analogues decrease food intake and have great promise for the fight against obesity. Little is known about their effects on food hedonic sensations and taste perception in poor controlled patients with type 2 diabetes (T2D). MATERIALS AND METHODS: Eighteen T2D patients with BMI ≥25 kg/m2 and poor controlled glycemia were studied before and after 3 months of treatment with Liraglutide. Detection thresholds for salty, sweet and bitter tastes, optimal preferences, olfactory liking, wanting and recalled liking for several food items were assessed. Subjects also answered questionnaires to measure their attitudes to food. RESULTS: T2D patients had a significant decrease in bodyweight and HbA1c after treatment with Liraglutide. Liraglutide improved gustative detection threshold of sweet flavors, and decreased wanting for sweet foods and recalled liking for fatty foods. It also led to a decrease in feelings of hunger. CONCLUSIONS: Liraglutide increases sensitivity to sweet tastes and decreases pleasure responses for fatty foods in poor controlled T2D patients, and is of particular interest in the understanding of the mechanisms of weight loss. CLINICAL TRIAL: NCT02674893.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Eating/psychology , Feeding Behavior/psychology , Food Preferences/psychology , Glucagon-Like Peptide 1/agonists , Liraglutide/therapeutic use , Mental Recall , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers/analysis , Choice Behavior , Diabetes Mellitus, Type 2/psychology , Female , Follow-Up Studies , Humans , Hunger/physiology , Hypoglycemic Agents/therapeutic use , Male , Middle Aged , Obesity/prevention & control , Prognosis , Taste/physiology , Young Adult
4.
Mol Metab ; 20: 166-177, 2019 02.
Article in English | MEDLINE | ID: mdl-30553770

ABSTRACT

OBJECTIVE: Hypothalamic glucose sensing (HGS) initiates insulin secretion (IS) via a vagal control, participating in energy homeostasis. This requires mitochondrial reactive oxygen species (mROS) signaling, dependent on mitochondrial fission, as shown by invalidation of the hypothalamic DRP1 protein. Here, our objectives were to determine whether a model with a HGS defect induced by a short, high fat-high sucrose (HFHS) diet in rats affected the fission machinery and mROS signaling within the mediobasal hypothalamus (MBH). METHODS: Rats fed a HFHS diet for 3 weeks were compared with animals fed a normal chow. Both in vitro (calcium imaging) and in vivo (vagal nerve activity recordings) experiments to measure the electrical activity of isolated MBH gluco-sensitive neurons in response to increased glucose level were performed. In parallel, insulin secretion to a direct glucose stimulus in isolated islets vs. insulin secretion resulting from brain glucose stimulation was evaluated. Intra-carotid glucose load-induced hypothalamic DRP1 translocation to mitochondria and mROS (H2O2) production were assessed in both groups. Finally, compound C was intracerebroventricularly injected to block the proposed AMPK-inhibited DRP1 translocation in the MBH to reverse the phenotype of HFHS fed animals. RESULTS: Rats fed a HFHS diet displayed a decreased HGS-induced IS. Responses of MBH neurons to glucose exhibited an alteration of their electrical activity, whereas glucose-induced insulin secretion in isolated islets was not affected. These MBH defects correlated with a decreased ROS signaling and glucose-induced translocation of the fission protein DRP1, as the vagal activity was altered. AMPK-induced inhibition of DRP1 translocation increased in this model, but its reversal through the injection of the compound C, an AMPK inhibitor, failed to restore HGS-induced IS. CONCLUSIONS: A hypothalamic alteration of DRP1-induced fission and mROS signaling in response to glucose was observed in HGS-induced IS of rats exposed to a 3 week HFHS diet. Early hypothalamic modifications of the neuronal activity could participate in a primary defect of the control of IS and ultimately, the development of diabetes.


Subject(s)
Blood Glucose/metabolism , Dynamins/metabolism , Hypothalamus/metabolism , Mitochondria/metabolism , Sensory Receptor Cells/metabolism , AMP-Activated Protein Kinase Kinases , Animals , Carotid Arteries/metabolism , Insulin Secretion , Insulin-Secreting Cells/metabolism , Male , Protein Kinases/metabolism , Protein Transport , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Signal Transduction
5.
Diabetes ; 66(2): 314-324, 2017 02.
Article in English | MEDLINE | ID: mdl-27899482

ABSTRACT

The mediobasal hypothalamus (MBH) contains neurons capable of directly detecting metabolic signals such as glucose to control energy homeostasis. Among them, glucose-excited (GE) neurons increase their electrical activity when glucose rises. In view of previous work, we hypothesized that transient receptor potential canonical type 3 (TRPC3) channels are involved in hypothalamic glucose detection and the control of energy homeostasis. To investigate the role of TRPC3, we used constitutive and conditional TRPC3-deficient mouse models. Hypothalamic glucose detection was studied in vivo by measuring food intake and insulin secretion in response to increased brain glucose level. The role of TRPC3 in GE neuron response to glucose was studied by using in vitro calcium imaging on freshly dissociated MBH neurons. We found that whole-body and MBH TRPC3-deficient mice have increased body weight and food intake. The anorectic effect of intracerebroventricular glucose and the insulin secretory response to intracarotid glucose injection are blunted in TRPC3-deficient mice. TRPC3 loss of function or pharmacological inhibition blunts calcium responses to glucose in MBH neurons in vitro. Together, the results demonstrate that TRPC3 channels are required for the response to glucose of MBH GE neurons and the central effect of glucose on insulin secretion and food intake.


Subject(s)
Body Weight/genetics , Eating/genetics , Energy Metabolism/genetics , Glucose/metabolism , Hypothalamus/metabolism , Insulin/metabolism , Neurons/metabolism , TRPC Cation Channels/genetics , Animals , Blotting, Western , Fasting , Glucose Tolerance Test , Homeostasis , Hypothalamus/cytology , Insulin Secretion , Male , Mice , Mice, Inbred C57BL , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , TRPC Cation Channels/metabolism
6.
J Cereb Blood Flow Metab ; 34(2): 339-46, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24301293

ABSTRACT

Hypothalamic glucose detection participates in maintaining glycemic balance, food intake, and thermogenesis. Although hypothalamic neurons are the executive cells involved in these responses, there is increasing evidence that astrocytes participate in glucose sensing (GS); however, it is unknown whether astroglial networking is required for glucose sensitivity. Astroglial connexins 30 and 43 (Cx30 and Cx43) form hexameric channels, which are apposed in gap junctions, allowing for the intercellular transfer of small molecules such as glucose throughout the astroglial networks. Here, we hypothesized that hypothalamic glucose sensitivity requires these connexins. First, we showed that both Cxs are enriched in the rat hypothalamus, with highly concentrated Cx43 expression around blood vessels of the mediobasal hypothalamus (MBH). Both fasting and high glycemic levels rapidly altered the protein levels of MBH astroglial connexins, suggesting cross talk within the MBH between glycemic status and the connexins' ability to dispatch glucose. Finally, the inhibition of MBH Cx43 (by transient RNA interference) attenuated hypothalamic glucose sensitivity in rats, which was demonstrated by a pronounced decreased insulin secretion in response to a brain glucose challenge. These results illustrate that astroglial connexins contribute to hypothalamic GS.


Subject(s)
Astrocytes/metabolism , Connexin 43/metabolism , Connexins/metabolism , Glucose/metabolism , Hypothalamus/metabolism , Insulin/metabolism , Nerve Tissue Proteins/metabolism , Animals , Astrocytes/cytology , Connexin 30 , Connexin 43/genetics , Connexins/genetics , Fasting/metabolism , Glucose/genetics , Hypothalamus/cytology , Insulin Secretion , Male , Nerve Tissue Proteins/genetics , RNA Interference , Rats , Rats, Wistar
7.
Neurosci Lett ; 534: 75-9, 2013 Feb 08.
Article in English | MEDLINE | ID: mdl-23201632

ABSTRACT

Hypothalamic detection of nutrients is involved in the control of energy metabolism and is altered in metabolic disorders. Although hypothalamic detection of blood lactate lowers hepatic glucose production and food intake, it is unknown whether it also modulates insulin secretion. To address this, a lactate injection via the right carotid artery (cephalad) was performed in Wistar rats. This triggered a transient increase in insulin secretion. Rats made hyperglycemic for 48h exhibited prolonged insulin secretion in response to a glucose injection via the carotid artery, but lactate injection induced two types of responses: half of the HG rats showed no difference compared to controls and the other half had markedly decreased insulin secretion. Astroglial monocarboxylates transporters MCT1 and MCT4 isoforms transfer lactate from blood to astrocytes and release lactate to the extracellular space, whilst the neuronal MCT2 isoform permits neuronal lactate uptake. We found that astroglial MCT1 and MCT4, and neuronal MCT2 protein levels in the medio-basal hypothalamus (MBH) were not modified by 48h-hyperglycemia. Together, these results indicate that hypothalamic sensing of circulating lactate triggers insulin secretion. Both glucose and lactate sensing are altered in a model of hyperglycemia, without alteration of MBH MCTs protein levels.


Subject(s)
Glucose/metabolism , Hyperglycemia/metabolism , Hypothalamus/metabolism , Lactic Acid/blood , Animals , Glucose/pharmacology , Hypothalamus/blood supply , Insulin/metabolism , Insulin Secretion , Lactic Acid/pharmacology , Male , Monocarboxylic Acid Transporters/metabolism , Muscle Proteins/metabolism , Rats , Rats, Wistar , Symporters/metabolism , Time Factors
8.
Front Cell Neurosci ; 6: 26, 2012.
Article in English | MEDLINE | ID: mdl-22737109

ABSTRACT

Tastant detection in the oral cavity involves selective receptors localized at the apical extremity of a subset of specialized taste bud cells called taste receptor cells (TRCs). The identification of the genes coding for the taste receptors involved in this process have greatly improved our understanding of the molecular mechanisms underlying detection. However, how these receptors signal in TRCs, and whether the components of the signaling cascades interact with each other or are organized in complexes is mostly unexplored. Here we report on the identification of three new binding partners for the mouse G protein gamma 13 subunit (Gγ13), a component of the bitter taste receptors signaling cascade. For two of these Gγ13 associated proteins, namely GOPC and MPDZ, we describe the expression in taste bud cells for the first time. Furthermore, we demonstrate by means of a yeast two-hybrid interaction assay that the C terminal PDZ binding motif of Gγ13 interacts with selected PDZ domains in these proteins. In the case of the PDZ domain-containing protein zona occludens-1 (ZO-1), a major component of the tight junction defining the boundary between the apical and baso-lateral region of TRCs, we identified the first PDZ domain as the site of strong interaction with Gγ13. This association was further confirmed by co-immunoprecipitation experiments in HEK 293 cells. In addition, we present immunohistological data supporting partial co-localization of GOPC, MPDZ, or ZO-1, and Gγ13 in taste buds cells. Finally, we extend this observation to olfactory sensory neurons (OSNs), another type of chemosensory cells known to express both ZO-1 and Gγ13. Taken together our results implicate these new interaction partners in the sub-cellular distribution of Gγ13 in olfactory and gustatory primary sensory cells.

9.
Front Cell Neurosci ; 3: 11, 2009.
Article in English | MEDLINE | ID: mdl-19847316

ABSTRACT

Taste receptors for sweet, bitter and umami tastants are G-protein-coupled receptors (GPCRs). While much effort has been devoted to understanding G-protein-receptor interactions and identifying the components of the signalling cascade downstream of these receptors, at the level of the G-protein the modulation of receptor signal transduction remains relatively unexplored. In this regard a taste-specific regulator of G-protein signaling (RGS), RGS21, has recently been identified. To study whether guanine nucleotide exchange factors (GEFs) are involved in the transduction of the signal downstream of the taste GPCRs we investigated the expression of Ric-8A and Ric-8B in mouse taste cells and their interaction with G-protein subunits found in taste buds. Mammalian Ric-8 proteins were initially identified as potent GEFs for a range of Galpha subunits and Ric-8B has recently been shown to amplify olfactory signal transduction. We find that both Ric-8A and Ric-8B are expressed in a large portion of taste bud cells and that most of these cells contain IP3R-3 a marker for sweet, umami and bitter taste receptor cells. Ric-8A interacts with Galpha-gustducin and Galphai2 through which it amplifies the signal transduction of hTas2R16, a receptor for bitter compounds. Overall, these findings are consistent with a role for Ric-8 in mammalian taste signal transduction.

SELECTION OF CITATIONS
SEARCH DETAIL
...