Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 14(2)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38251123

ABSTRACT

We report ab initio molecular dynamic simulations of the organic structure-directing agent (OSDA) in the channels of SCM-14 and SCM-15 germanosilicates for models with different germanium distribution. Since OSDA was free to move inside the channels, independent of its initial orientation after the simulations in all structures the OSDA, protonated 4-pyrrolidinopyridine, is positioned almost perpendicular to the large channels of SCM-14. The structures obtained from the dynamic simulation are more stable by 157 to 331 kJ/mol than the structures obtained by initial geometry optimization. After simulations, the average distance between the N atom of the pyridine moiety of the OSDA and O from Ge-O-Ge is shorter by 0.2 Å than the same distance obtained from initial optimization. The stretching N-H frequencies in the IR spectra of the OSDA and other calculated vibrational frequencies are not characteristic of the orientation of the molecule and cannot be used to detect it.

2.
J Am Chem Soc ; 145(28): 15313-15323, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37394746

ABSTRACT

Structural flexibility is an intrinsic feature of zeolites, and the characterization of such dynamic behavior is key to maximizing their performance and realizing their potential in both existing and emerging applications. Here, the flexibility of a high-aluminum nano-sized RHO zeolite is directly visualized with in situ TEM for the first time. Variable temperature experiments directly observe the physical expansion of the discrete nanocrystals in response to changes in both guest-molecule chemistry (Ar vs CO2) and temperature. The observations are complemented by operando FTIR spectroscopy verifying the nature of the adsorbed CO2 within the pore network, the desorption kinetics of carbonate species, and changes to the structural bands at high temperatures. Quantum chemical modeling of the RHO zeolite structure substantiates the effect of cation (Na+ and Cs+) mobility in the absence and presence of CO2 on the flexibility behavior of the structure. The results demonstrate the combined influences of temperature and CO2 on the structural flexibility consistent with the experimental microscopy observations.

SELECTION OF CITATIONS
SEARCH DETAIL