Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
1.
Pediatr Infect Dis J ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713829

ABSTRACT

Hematopoietic stem cell transplant recipients are prone to infectious complications. Infections caused by nontuberculous mycobacteria have increased in adults but literature in children is scarce. We report 6 episodes of disseminated or pulmonary nontuberculous mycobacteria infection among 5 pediatric hematopoietic stem cell transplant recipients. All but one were caused by Mycobacterium avium complex. Four patients died, 2 related to nontuberculous mycobacteria infection.

2.
Article in English | MEDLINE | ID: mdl-38784663

ABSTRACT

Introduction: Activated phosphoinositide 3-kinase (PI3K)δ syndrome (APDS) is an ultra-rare inborn error of immunity (IEI) combining immunodeficiency and immune dysregulation. This study determined what represents value in APDS in Spain from a multidisciplinary perspective applying multicriteria decision analysis (MCDA) methodology. Methods: A multidisciplinary committee of nine experts scored the evidence matrix. A specific framework for orphan drug evaluation in Spain and the weights assigned by a panel of 98 evaluators and decision-makers was used. Re-evaluation of scores was performed. Results: APDS is considered a very severe disease with important unmet needs, including misdiagnosis and diagnostic delay. Current management is limited to treatment of symptoms with off-label use of therapies supported by limited evidence. Therapeutic benefit is partial, resulting in limited disease control. Haematopoietic stem cell transplantation (HSCT), the only potential curative alternative, is restricted to a reduced patient population and without evidence of long-term efficacy or safety. All options present a limited safety profile. Data on patients' quality of life are lacking. APDS is associated with high pharmacological, medical and indirect costs. Conclusions: APDS is considered a severe disease, with limited understanding by key stakeholders of how treatment success is assessed in clinical practice, the serious impact that has on patients and the associated high economic burden. This study brings to light how MCDA methodology could represent a useful tool to complement current clinical and decision-making methods used by APDS experts and evaluators.

3.
Eur J Clin Invest ; 54(6): e14191, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38440843

ABSTRACT

BACKGROUND: Genetic diagnosis of inborn errors of immunity (IEI) is complex due to the large number of genes involved and their molecular features. Missense variants have been reported as the most common cause of IEI. However, the frequency of copy number variants (CNVs) may be underestimated since their detection requires specific quantitative techniques. At this point, the use of Next Generation Sequencing (NGS) is acquiring relevance. METHODS: In this article, we present our experience in the genetic diagnosis of IEI based on three diagnostic algorithms that allowed the detection of single nucleotide variants (SNVs) and CNVs. Following this approximation, 703 index cases were evaluated between 2014 and 2021. Sanger sequencing, MLPA, CGH array, breakpoint spanning PCR or a customized NGS-based multigene-targeted panel were performed. RESULTS: A genetic diagnosis was reached in 142 of the 703 index cases (20%), 19 of them presented deletions as causal variants. Deletions were also detected in 5 affected relatives and 16 healthy carriers during the family studies. Additionally, we compile, characterize and present all the CNVs detected by our diagnostic algorithms, representing the largest cohort of deletions related to IEI to date. Furthermore, three bioinformatic tools (LACONv, XHMM, VarSeq™) based on NGS data were evaluated. VarSeq™ was the most sensitive and specific bioinformatic tool; detecting 21/23 (91%) deletions located in captured regions. CONCLUSION: Based on our results, we propose a strategy to guide the molecular diagnosis that can be followed by expert and non-expert centres in the field of IEI.


Subject(s)
DNA Copy Number Variations , High-Throughput Nucleotide Sequencing , Humans , DNA Copy Number Variations/genetics , Algorithms , Male , Female , Polymorphism, Single Nucleotide , Child , Mutation, Missense/genetics
4.
Immunology ; 172(3): 440-450, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38514903

ABSTRACT

Analysis of genetically defined immunodeficient patients allows study of the effect of the absence of specific proteins on human immune function in real-world conditions. Here we have addressed the importance of type I interferon signalling for human NK cell development by studying the phenotype and function of circulating NK cells isolated from patients suffering primary immunodeficiency disease due to mutation of either the human interferon regulatory factor 9 (IRF9) or the signal transducer and activator of transcription 2 (STAT2) genes. IRF9, together with phosphorylated STAT1 and STAT2, form a heterotrimer called interferon stimulated gene factor 3 (ISGF3) which promotes the expression of hundreds of IFN-stimulated genes that mediate antiviral function triggered by exposure to type I interferons. IRF9- and STAT2-deficient patients are unable to respond efficiently to stimulation by type I interferons and so our experiments provide insights into the importance of type I interferon signalling and the consequences of its impairment on human NK cell biology. Surprisingly, the NK cells of these patients display essentially normal phenotype and function.


Subject(s)
Interferon Type I , Interferon-Stimulated Gene Factor 3, gamma Subunit , Killer Cells, Natural , STAT2 Transcription Factor , Signal Transduction , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , STAT2 Transcription Factor/metabolism , STAT2 Transcription Factor/genetics , Interferon-Stimulated Gene Factor 3, gamma Subunit/metabolism , Interferon-Stimulated Gene Factor 3, gamma Subunit/genetics , Interferon Type I/metabolism , Mutation , Cell Differentiation , STAT1 Transcription Factor/metabolism , STAT1 Transcription Factor/genetics , Cells, Cultured
5.
Cytometry A ; 105(5): 368-375, 2024 05.
Article in English | MEDLINE | ID: mdl-38327134

ABSTRACT

Chimeric antigen receptor (CAR) T-cell therapy is a breakthrough in hematologic malignancies, such as acute B lymphoblastic leukemia (B-ALL). Monitoring this treatment is recommended, although standardized protocols have not been developed yet. This work compares two flow cytometry monitoring strategies and correlates this technique with qPCR method. CAR-T cells were detected by two different flow-cytometry protocols (A and B) in nine blood samples from one healthy donor and five B-ALL patients treated with Tisagenlecleucel (Kymriah®, USA). HIV-1 viral load allowed CAR detection by qPCR, using samples from seven healthy donors and nine B-ALL patients. CAR detection by protocol A and B did not yield statistically significant differences (1.9% vs. 11.8% CD3 + CAR+, p = 0.07). However, protocol B showed a better discrimination of the CD3 + CAR+ population. A strong correlation was observed between protocol B and qPCR (r = 0.7, p < 0.0001). CD3 + CAR+ cells were detected by flow cytometry only when HIV-1 viral load was above 104 copies/mL. In conclusion, protocol B was the most specific flow-cytometry procedure for the identification of CAR-T cells and showed a high correlation with qPCR. Further efforts are needed to achieve a standardized monitoring approach.


Subject(s)
Flow Cytometry , HIV-1 , Immunotherapy, Adoptive , Receptors, Chimeric Antigen , T-Lymphocytes , Viral Load , Humans , Flow Cytometry/methods , Immunotherapy, Adoptive/methods , HIV-1/immunology , HIV-1/genetics , Viral Load/methods , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/standards , CD3 Complex , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology
6.
Heliyon ; 10(1): e22925, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38163219

ABSTRACT

Introduction: Rheumatoid arthritis (RA) is a heterogeneous disease in which therapeutic strategies used have evolved dramatically. Despite significant progress in treatment strategies such as the development of anti-TNF drugs, it is still not possible to differentiate those patients who will respond from who will not. This can lead to effective-treatment delays and unnecessary costs. The aim of this study was to utilize a profile of the patient's characteristics, clinical parameters, immune status (cytokine profile) and artificial intelligence to assess the feasibility of developing a tool that could allow us to predict which patients will respond to treatment with anti-TNF drugs. Methods: This study included 38 patients with RA from the RA-Paz cohort. Clinical activity was measured at baseline and after 6 months of treatment. The cytokines measured before the start of anti-TNF treatment were IL-1, IL-12, IL-10, IL-2, IL-4, IFNg, TNFa, and IL-6. Statistical analyses were performed using the Wilcoxon-Rank-Sum Test and the Benjamini-Hochberg method. The predictive model viability was explored using the 5-fold cross-validation scheme in order to train the logistic regression models. Results: Statistically significant differences were found in parameters such as IL-6, IL-2, CRP and DAS-ESR. The predictive model performed to an acceptable level in correctly classifying patients (ROC-AUC 0.804167 to 0.891667), suggesting that it would be possible to develop a clinical classification tool. Conclusions: Using a combination of parameters such as IL-6, IL-2, CRP and DAS-ESR, it was possible to develop a predictive model that can acceptably discriminate between remitters and non-remitters. However, this model needs to be replicated in a larger cohort to confirm these findings.

7.
Sci Adv ; 9(49): eadi9566, 2023 12 08.
Article in English | MEDLINE | ID: mdl-38055819

ABSTRACT

Autosomal dominant loss-of-function (LoF) variants in cytotoxic T-lymphocyte associated protein 4 (CTLA4) cause immune dysregulation with autoimmunity, immunodeficiency and lymphoproliferation (IDAIL). Incomplete penetrance and variable expressivity are characteristic of IDAIL caused by CTLA-4 haploinsufficiency (CTLA-4h), pointing to a role for genetic modifiers. Here, we describe an IDAIL proband carrying a maternally inherited pathogenic CTLA4 variant and a paternally inherited rare LoF missense variant in CLEC7A, which encodes for the ß-glucan pattern recognition receptor DECTIN-1. The CLEC7A variant led to a loss of DECTIN-1 dimerization and surface expression. Notably, DECTIN-1 stimulation promoted human and mouse regulatory T cell (Treg) differentiation from naïve αß and γδ T cells, even in the absence of transforming growth factor-ß. Consistent with DECTIN-1's Treg-boosting ability, partial DECTIN-1 deficiency exacerbated the Treg defect conferred by CTL4-4h. DECTIN-1/CLEC7A emerges as a modifier gene in CTLA-4h, increasing expressivity of CTLA4 variants and acting in functional epistasis with CTLA-4 to maintain immune homeostasis and tolerance.


Subject(s)
Haploinsufficiency , Lectins, C-Type , Animals , Humans , Mice , Autoimmunity , CTLA-4 Antigen/genetics , Lectins, C-Type/genetics
8.
Sci Adv ; 9(42): eadi6153, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37862409

ABSTRACT

The spin state of Fe can alter the key physical properties of silicate melts, affecting the early differentiation and the dynamic stability of the melts in the deep rocky planets. The low-spin state of Fe can increase the affinity of Fe for the melt over the solid phases and the electrical conductivity of melt at high pressures. However, the spin state of Fe has never been measured in dense silicate melts due to experimental challenges. We report detection of dominantly low-spin Fe in dynamically compressed olivine melt at 150 to 256 gigapascals and 3000 to 6000 kelvin using laser-driven shock wave compression combined with femtosecond x-ray diffraction and x-ray emission spectroscopy using an x-ray free electron laser. The observation of dominantly low-spin Fe supports gravitationally stable melt in the deep mantle and generation of a dynamo from the silicate melt portion of rocky planets.

9.
Struct Dyn ; 10(5): 054304, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37901682

ABSTRACT

We present a dedicated end-station for solution phase high repetition rate (MHz) picosecond hard x-ray spectroscopy at beamline 15-2 of the Stanford Synchrotron Radiation Lightsource. A high-power ultrafast ytterbium-doped fiber laser is used to photoexcite the samples at a repetition rate of 640 kHz, while the data acquisition operates at the 1.28 MHz repetition rate of the storage ring recording data in an alternating on-off mode. The time-resolved x-ray measurements are enabled via gating the x-ray detectors with the 20 mA/70 ps camshaft bunch of SPEAR3, a mode available during the routine operations of the Stanford Synchrotron Radiation Lightsource. As a benchmark study, aiming to demonstrate the advantageous capabilities of this end-station, we have conducted picosecond Fe K-edge x-ray absorption spectroscopy on aqueous [FeII(phen)3]2+, a prototypical spin crossover complex that undergoes light-induced excited spin state trapping forming an electronic excited state with a 0.6-0.7 ns lifetime. In addition, we report transient Fe Kß main line and valence-to-core x-ray emission spectra, showing a unique detection sensitivity and an excellent agreement with model spectra and density functional theory calculations, respectively. Notably, the achieved signal-to-noise ratio, the overall performance, and the routine availability of the developed end-station have enabled a systematic time-resolved science program using the monochromatic beam at the Stanford Synchrotron Radiation Lightsource.

10.
Pediatr Transplant ; 27(7): e14589, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37543721

ABSTRACT

BACKGROUND: There is considerable variation in vaccination practices between pediatric transplant centers. This study aims to evaluate active immunization attitudes and practices among ERN-TransplantChild centers and identify potential areas of improvement that could be addressed by shared evidence-based protocols. METHODS: A cross-sectional questionnaire of attitudes and practices toward immunization of pediatric SOT and HSCT candidates and recipients was sent to a representative member of multidisciplinary teams from 27 European centers belonging to the ERN-TransplantChild. RESULTS: A total of 28/62 SOT programs and 6/12 HSCT programs across 21 European centers participated. A quarter of centers did not have an on-site protocol for the immunizations. At the time of transplantation, pediatric candidates were fully immunized (80%-100%) in 57% and 33% of the SOT and HSCT programs. Variations in the time between vaccine administration and admission to the waiting list were reported between the centers, with 2 weeks for inactivated vaccines and variable time (2-4 weeks) for live-attenuated vaccines (LAVs). Almost all sites recommended immunization in the post-transplant period, with a time window of 4-8 months for the inactivated vaccines and 16-24 months for MMR and Varicella vaccines. Only five sites administer LAVs after transplantation, with seroconversion evaluated in 80% of cases. CONCLUSIONS: The immunization coverage of European pediatric transplant recipients is still inconsistent and far from adequate. This survey is a starting point for developing shared evidence-based immunization protocols for safe vaccination among pediatric transplant centers and generating new research studies.

11.
Allergy Asthma Clin Immunol ; 19(1): 71, 2023 Aug 19.
Article in English | MEDLINE | ID: mdl-37598192

ABSTRACT

BACKGROUND: Real world data on the response to the SARS-CoV-2 vaccine in patients with immunomediated diseases (IMIDs) treated with immunesuppressants is of great interest because vaccine response may be impaired. The main aim was to study the humoral and cellular immune response after SARS-CoV-2 vaccination in patients with IMIDs treated with immunosuppressants. The secondary aim was to describe the frequency of SARS-CoV-2 infections after vaccination in these patients. MATERIAL AND METHODS: This is an observational study including 86 patients with IMIDs. All patients were treated with biologic or targeted synthetic disease-modifying antirheumatic drugs [b/tsDMARDs: TNF inhibitors (TNFi), rituximab, anti-interleukin 6 receptor (anti-IL6R) or JAK inhibitors (JAKi)]. Demographic and clinical information were collected. After 4-6 weeks of 2nd and 3rd vaccine doses, humoral response was assessed using the Thermo Scientific ELiA SARS-CoV-2-Sp1 IgG Test. Also, in patients with serum SARS-CoV-2 antibody levels under 100UI/ml, cellular response was analyzed using the QuantiFERON SARS-CoV-2 Starter Pack. RESULTS: A total of 86 patients under b/tsDMARDs and 38 healthy controls were included. Most patients received TNFi (45 with TNFi, 31 with rituximab, 5 with anti-IL6R and 5 with JAKi). SARS-CoV-2 antibodies (Ab) were present in an 86% of patients with IMIDs and in 100% healthy controls (p = 0.017). However, 12 (14%) patients had undetectable SARS-CoV-2 Ab levels, all treated with rituximab. In addition, SARS-CoV-2 Ab (IU/ml) were statistically lower in patients (Mdn (IQR): 59.5 (17-163) in patients vs 625 (405-932) in controls, p < 0.001). Patients treated with rituximab had lower Ab levels than those treated with TNFi and controls (p < 0.001). The cellular response to SARS-CoV-2 vaccine was evaluated in 30 patients. Eleven patients had a positive cellular response, being more frequent in patients treated with rituximab (p = 0.03). SARS-CoV-2 infection was reported in 43% of patients and 34% of controls after vaccination. Only 6 (7%) patients required hospitalization, most of whom treated with rituximab (67%). CONCLUSION: SARS-CoV-2 antibody levels were lower in patients than in controls, especially in patients treated with rituximab. A cellular response can be detected despite having a poor humoral response. Severe infections in vaccinated patients with IMIDs are rare, and are observed mainly in patients treated with rituximab.

12.
BMJ Open ; 13(7): e072350, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37429687

ABSTRACT

INTRODUCTION: There is a need to optimise the management of atopic dermatitis (AD), improving the efficacy of treatments and reducing the toxicity associated with them. Although the efficacy of ciclosporine (CsA) in the treatment of AD has been thoroughly documented in the literature, the optimal dose has not been yet established. The use of multiomic predictive models of treatment response could optimise CsA therapy in AD. METHODS AND ANALYSIS: The study is a low-intervention phase 4 trial to optimise the treatment of patients with moderate-severe AD requiring systemic treatment. The primary objectives are to identify biomarkers that could allow for the selection of responders and non-responders to first-line treatment with CsA and to develop a response prediction model to optimise the CsA dose and treatment regimen in responding patients based on these biomarkers. The study is divided into two cohorts: the first comprised of patients starting treatment with CsA (cohort 1), and the second, of patients already receiving or who have received CsA therapy (cohort 2). ETHICS AND DISSEMINATION: The study activities began following authorisation by the Spanish Regulatory Agency (AEMPS) and the Clinical Research Ethics Committee of La Paz University Hospital approval. Trial results will be submitted for publication in an open access peer-reviewed medical speciality-specific publication.Trial registration of this study can be located at the EU Clinical Trials Register, available from https://euclinicaltrials.eu/search-for-clinical-trials/?lang=en. Our clinical trial was registered in the website before the enrolment of the first patient complying with European regulations. EU Clinical Trials Register is a primary registry according the WHO. Once our trial was included in a primary and official registry, in order to extend the accessibility to our research, we also registered it retrospectively in clinicaltrials.gov; however, this is not mandatory as per our regulation. TRIAL REGISTRATION NUMBER: NCT05692843.


Subject(s)
Cyclosporine , Dermatitis, Atopic , Humans , Biomarkers , Cyclosporine/therapeutic use , Dermatitis, Atopic/drug therapy , Multiomics , Retrospective Studies , Clinical Trials, Phase IV as Topic
13.
Front Immunol ; 14: 1136308, 2023.
Article in English | MEDLINE | ID: mdl-37215146

ABSTRACT

Introduction: Inborn errors of immunity (IEI) are a heterogeneous group of diseases caused by intrinsic defects of the immune system. Estimating the immune competence of immunocompromised patients for an infection risk assessment or after SARS-CoV-2 vaccination constituted a challenge. Methods: The aim of this study was to determine the humoral responses of patients with IEI through a comprehensive analysis of specific receptor-binding domain-positive (RBD+) IgG+ memory B cells (MBCs) by flow cytometry, together with routine S-specific IgG antibodies and QuantiFERON SARS-CoV-2 (T-cell response), before the vaccine and 3 weeks after a second dose. Results and discussion: We first analyzed the percentage of specific RBD+ IgG+ MBCs in healthy healthcare workers. Within the control group, there was an increase in the percentage of specific IgG+ RBD+ MBCs 21 days after the second dose, which was consistent with S-specific IgG antibodies.Thirty-one patients with IEI were included for the pre- and post-vaccination study; IgG+ RBD+ MBCs were not evaluated in 6 patients due to an absence of B cells in peripheral blood. We detected various patterns among the patients with IEI with circulating B cells (25, 81%): an adequate humoral response was observed in 12/25, consider by the detection of positive S-specific IgG antibodies and the presence of specific IgG+ RBD+ MBCs, presenting a positive T-cell response; in 4/25, very low S-specific IgG antibody counts correlated with undetectable events in the IgG+ RBD+ MBC compartment but with positive cellular response. Despite the presence of S-specific IgG antibodies, we were unable to detect a relevant percentage of IgG+ RBD+ MBCs in 5/25; however, all presented positive T-cell response. Lastly, we observed a profound failure of B and T-cell response in 3 (10%) patients with IEI, with no assessment of S-specific IgG antibodies, IgG+ RBD+ MBCs, and negative cellular response. The identification of specific IgG+ RBD+ MBCs by flow cytometry provides information on different humoral immune response outcomes in patients with IEI and aids the assessment of immune competence status after SARS-CoV-2 mRNA vaccine (BNT162b2), together with S-specific IgG antibodies and T-cell responses.


Subject(s)
COVID-19 , Memory B Cells , Humans , COVID-19 Vaccines , BNT162 Vaccine , Flow Cytometry , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , Health Personnel , Immunoglobulin G
14.
Front Med (Lausanne) ; 10: 1083215, 2023.
Article in English | MEDLINE | ID: mdl-36844219

ABSTRACT

Background: Immunocompromised patients are susceptible to high-risk opportunistic infections and malignant diseases. Most antiviral and antifungal drugs are quite toxic, relatively ineffective, and induce resistance in the long term. The transfer of pathogen-specific Cytotoxic T-Lymphocytes has shown a minimal toxicity profile and effectiveness in treating Cytomegalovirus, Adenovirus, Epstein - Barr virus, BK Virus and Aspergillus infections, but this therapy have the main limitations of regulatory issues, high cost, and absence of public cell banks. However, CD45RA- cells containing pathogen-specific memory T-cells involve a less complex manufacturing and regulatory process and are cheaper, feasible, safe, and potentially effective. Methods: We present preliminary data from six immunocompromised patients: four who had severe infectious diseases and two who had EBV lymphoproliferative disease. All of them underwent multiple safe familial CD45RA- T-cell infusions as adoptive passive cell therapy, containing Cytomegalovirus, Epstein - Barr virus, BK virus, and Aspergillus-specific memory T-cells. We also present the method for selecting the best donors for CD45RA- cells in each case and the procedure to isolate and store these cells. Results: The infusions were safe, there was no case of graft-versus host disease, and they showed a clear clinical benefit. The patients treated for BK virus nephritis, Cytomegalovirus encephalitis, Cytomegalovirus reactivation, and disseminated invasive aspergillosis experienced pathogen clearance, complete resolution of symptoms in 4-6 weeks and a lymphocyte increase in 3 of 4 cases after 3-4 months. Donor T cell transient microchimerism was detected in one patient. The two patients treated for EBV lymphoproliferative disease underwent chemotherapy and several infusions of CD45RA- memory T-cells containing EBV cytotoxic lymphocytes. Donor T-cell microchimerism was observed in both patients. The viremia cleared in one of the patients, and in the other, despite the viremia not clearing, hepatic lymphoproliferative disease remained stable and was ultimately cured with EBV-specific Cytotoxic T-Lymphocytes. Conclusion: The use of familial CD45RA- T-cells containing specific Cytotoxic T-lymphocytes is a feasible, safe and potential effective approach for treating severe pathogen infections in immunocompromised patients through a third party donor. Furthermore, this approach might be of universal use with fewer institutional and regulatory barriers.

15.
Opt Lett ; 48(2): 497, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36638493

ABSTRACT

This publisher's note contains corrections to Opt. Lett.47, 3976 (2022).10.1364/OL.464816.

16.
Front Immunol ; 13: 1049188, 2022.
Article in English | MEDLINE | ID: mdl-36505469

ABSTRACT

Background: Immune responses to vaccines against severe acute respiratory syndrome (SARS)-coronavirus (CoV)-2 are variable. In the absence of disease, youngsters are expected to better react to vaccines than adults. Nevertheless, chronic immunosuppression in transplant recipients may impair their capability to generate protection. We aim to explore immune responses after BNT162b2 SARS-CoV-2 vaccination in our cohort of young liver-transplanted patients. Methods: A prospective study of adolescent liver-transplanted patients (n=33) in the long-term follow-up was performed. Immune responses after receiving Pfizer-BioNTech BNT162b2 vaccine were analyzed at two time-points: baseline and 30 days after the second dose. Humoral responses were measured by fluoroenzyme-immunoassay and T-cell responses by interferon-γ-release assay. Post-vaccine coronavirus disease (COVID-19) events were recorded by a survey. Results: Pre-vaccine SARS-CoV-2-specific antibodies were undetectable in 27/32 (84.4%), negative/indeterminate in 3/32 (9.4%) and positive in 2/32 (6.3%) patients. Cellular responses at baseline were negative in 12/18 (66.6%), positive in 3/18 (16.6%) and indeterminate in 3/18 (16.6%) recipients. None of the baseline positives recalled any symptoms. Post-vaccine antibodies were detected in all patients and 92.6% showed levels >816 BAU/mL. Twenty (71.4%) recipients had positive T-cell responses. Regarding post-vaccine SARS-Cov-2 infection, 10 (30.3%) patients reported COVID-19 without hospitalization and 21 (63.6%) did not notify any infection. Negative and positive cell-response groups after vaccination showed statistically significant differences regarding COVID-19 cases (62.5% vs 22.2%, respectively; p=0.046). Conclusions: Adolescents and young adults with liver transplantation responded to SARS-Cov-2 vaccine, generating both humoral and cellular responses. Recipients developing cellular responses after vaccination had a lower incidence of COVID-19.


Subject(s)
COVID-19 , Liver Transplantation , Vaccines , Adolescent , Young Adult , Humans , SARS-CoV-2 , COVID-19 Vaccines , BNT162 Vaccine , Liver Transplantation/adverse effects , Prospective Studies , COVID-19/prevention & control , Antibodies, Viral , Immunity, Cellular
17.
J Phys Condens Matter ; 35(9)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36575863

ABSTRACT

Alumina (Al2O3) is an important ceramic material notable for its compressive strength and hardness. It represents one of the major oxide components of the Earth's mantle. Static compression experiments have reported evidence for phase transformations from the trigonalα-corundum phase to the orthorhombic Rh2O3(II)-type structure at ∼90 GPa, and then to the post-perovskite structure at ∼130 GPa, but these phases have yet to be directly observed under shock compression. In this work, we describe laser-driven shock compression experiments on polycrystalline alumina conducted at the Matter in Extreme Conditions endstation of the Linac Coherent Light Source. Ultrafast x-ray pulses (50 fs, 1012photons/pulse) were used to probe the atomic-level response at different times during shock propagation and subsequent pressure release. At 107 ± 8 GPa on the Hugoniot, we observe diffraction peaks that match the orthorhombic Rh2O3(II) phase with a density of 5.16 ± 0.03 g cm-3. Upon unloading, the material transforms back to theα-corundum structure. Upon release to ambient pressure, densities are lower than predicted assuming isentropic release, indicating additional lattice expansion due to plastic work heating. Using temperature values calculated from density measurements, we provide an estimate of alumina's strength on release from shock compression.

18.
J Pediatr Intensive Care ; 11(3): 259-264, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35928043

ABSTRACT

The multisystem inflammatory syndrome in children (MIS-C) is a novel and concerning entity related to severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection. Although MIS-C has been the subject of intensive research efforts, its pathophysiology and optimal treatment remain elusive. We studied the clinical features, laboratory findings, and immunoinflammatory profiles of seven children prospectively admitted to a pediatric intensive care unit (PICU) during the first wave of the pandemic. All patients had immunoglobulin (Ig)-G against SARS-CoV-2, four of seven patients had both IgM and IgG, and in one of the 7 SARS-CoV-2 was detected in a respiratory sample. All patients received intravenous fluid boluses (median: 15 mL/kg) and norepinephrine. The most common form of respiratory support was supplemental oxygen via nasal cannula. None of the patients needed mechanical ventilation. The cardiovascular system was frequently involved. All patients had an elevated troponin-I (median: 107.3 ng/L). Four out of seven patients had coronary artery abnormalities, and two of seven had both abnormal electrocardiogram (EKG) findings and evidence of left ventricular dysfunction on echocardiogram. Ig levels and complement function were normal. Peripheral blood phenotyping with flow cytometry showed decreased T-cell numbers at the expense of CD8+ T-cells. Cytokine profiling showed a heterogeneous increase in interleukin (IL)-6, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, IL-18, IL-2Ra, IL-10, and IL-1Ra that tended to normalize after treatment. Our study shows that children with MIS-C have elevated plasma levels of pro- and anti-inflammatory cytokines in the acute phase of the disease without other relevant immunologic disturbances. These findings suggest the presence of a mixed antagonist response syndrome (MARS) similar to that present in pediatric sepsis. Combining a meticulous differential diagnosis with cautiously coordinated immunomodulatory therapy and high-quality supportive care can help clinicians avoid causing iatrogenic harm in patients with MIS-C.

19.
Nat Biotechnol ; 40(11): 1680-1689, 2022 11.
Article in English | MEDLINE | ID: mdl-35697804

ABSTRACT

Fast, high-throughput methods for measuring the level and duration of protective immune responses to SARS-CoV-2 are needed to anticipate the risk of breakthrough infections. Here we report the development of two quantitative PCR assays for SARS-CoV-2-specific T cell activation. The assays are rapid, internally normalized and probe-based: qTACT requires RNA extraction and dqTACT avoids sample preparation steps. Both assays rely on the quantification of CXCL10 messenger RNA, a chemokine whose expression is strongly correlated with activation of antigen-specific T cells. On restimulation of whole-blood cells with SARS-CoV-2 viral antigens, viral-specific T cells secrete IFN-γ, which stimulates monocytes to produce CXCL10. CXCL10 mRNA can thus serve as a proxy to quantify cellular immunity. Our assays may allow large-scale monitoring of the magnitude and duration of functional T cell immunity to SARS-CoV-2, thus helping to prioritize revaccination strategies in vulnerable populations.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Immunity, Cellular , Polymerase Chain Reaction , T-Lymphocytes
20.
EClinicalMedicine ; 50: 101515, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35770252

ABSTRACT

Background: Most children and adolescents infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain asymptomatic or develop a mild coronavirus disease 2019 (COVID-19) that usually does not require medical intervention. However, a small proportion of pediatric patients develop a severe clinical condition, multisystem inflammatory syndrome in children (MIS-C). The involvement of epigenetics in the control of the immune response and viral activity prompted us to carry out an epigenomic study to uncover target loci regulated by DNA methylation that could be altered upon the appearance of MIS-C. Methods: Peripheral blood samples were recruited from 43 confirmed MIS-C patients. 69 non-COVID-19 pediatric samples and 15 COVID-19 pediatric samples without MIS-C were used as controls. The cases in the two groups were mixed and divided into discovery (MIS-C = 29 and non-MIS-C = 56) and validation (MIS-C = 14 and non-MIS-C = 28) cohorts, and balanced for age, gender and ethnic background. We interrogated 850,000 CpG sites of the human genome for DNA methylation variants. Findings: The DNA methylation content of 33 CpG loci was linked with the presence of MIS-C. Of these sites, 18 (54.5%) were located in described genes. The top candidate gene was the immune T-cell mediator ZEB2; and others highly ranked candidates included the regulator of natural killer cell functional competence SH2D1B; VWA8, which contains a domain of the Von Willebrand factor A involved in the pediatric hemostasis disease; and human leukocyte antigen complex member HLA-DRB1; in addition to pro-inflammatory genes such as CUL2 and AIM2. The identified loci were used to construct a DNA methylation profile (EPIMISC) that was associated with MIS-C in both cohorts. The EPIMISC signature was also overrepresented in Kawasaki disease patients, a childhood pathology with a possible viral trigger, that shares many of the clinical features of MIS-C. Interpretation: We have characterized DNA methylation loci that are associated with MIS-C diagnosis. The identified genes are likely contributors to the characteristic exaggerated host inflammatory response observed in these patients. The described epigenetic signature could also provide new targets for more specific therapies for the disorder. Funding: Unstoppable campaign of Josep Carreras Leukaemia Foundation, Fundació La Marató de TV3, Cellex Foundation and CERCA Programme/Generalitat de Catalunya.

SELECTION OF CITATIONS
SEARCH DETAIL
...