Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
RSC Chem Biol ; 5(1): 12-18, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38179194

ABSTRACT

As our understanding of biological systems grows, so does the need to selectively target individual or multiple members of specific protein families in order to probe their function. Many targets of current biological and pharmaceutical interest are part of a large family of closely related proteins and achieving ligand selectivity often remains either an elusive or time-consuming endeavour. Cyclic peptides (CPs) occupy a key niche in ligand space, able to achieve high affinity and selectivity while retaining synthetic accessibility. De novo cyclic peptide ligands can be rapidly generated against a given target using mRNA display. In this study we harness mRNA display technology and the wealth of next generation sequencing (NGS) data generated to explore both experimental approaches and bioinformatic, statistical data analysis of peptide enrichment in cross-screen selections to rapidly generate high affinity CPs with differing intra-family protein selectivity profiles against fibroblast growth factor receptor (FGF-R) family proteins. Using these methods, CPs with distinct selectivity profiles can be generated which can serve as valuable tool compounds to decipher biological questions.

2.
Sci Adv ; 8(31): eabo5546, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35921420

ABSTRACT

Homologous enzymes often exhibit different catalytic rates despite a fully conserved active site. The canonical view is that an enzyme sequence defines its structure and function and, more recently, that intrinsic protein dynamics at different time scales enable and/or promote catalytic activity. Here, we show that, using the protein tyrosine phosphatase PTP1B, residues surrounding the PTP1B active site promote dynamically coordinated chemistry necessary for PTP1B function. However, residues distant to the active site also undergo distinct intermediate time scale dynamics and these dynamics are correlated with its catalytic activity and thus allow for different catalytic rates in this enzyme family. We identify these previously undetected motions using coevolutionary coupling analysis and nuclear magnetic resonance spectroscopy. Our findings strongly indicate that conserved dynamics drives the enzymatic activity of the PTP family. Characterization of these conserved dynamics allows for the identification of novel regulatory elements (therapeutic binding pockets) that can be leveraged for the control of enzymes.


Subject(s)
Protein Conformation , Catalytic Domain
3.
Elife ; 112022 06 10.
Article in English | MEDLINE | ID: mdl-35686986

ABSTRACT

Transient receptor potential (TRP) proteins are a large family of cation-selective channels, surpassed in variety only by voltage-gated potassium channels. Detailed molecular mechanisms governing how membrane voltage, ligand binding, or temperature can induce conformational changes promoting the open state in TRP channels are still a matter of debate. Aiming to unveil distinctive structural features common to the transmembrane domains within the TRP family, we performed phylogenetic reconstruction, sequence statistics, and structural analysis over a large set of TRP channel genes. Here, we report an exceptionally conserved set of residues. This fingerprint is composed of twelve residues localized at equivalent three-dimensional positions in TRP channels from the different subtypes. Moreover, these amino acids are arranged in three groups, connected by a set of aromatics located at the core of the transmembrane structure. We hypothesize that differences in the connectivity between these different groups of residues harbor the apparent differences in coupling strategies used by TRP subgroups.


Subject(s)
Transient Receptor Potential Channels , Phylogeny , Protein Domains , Transient Receptor Potential Channels/chemistry , Transient Receptor Potential Channels/genetics
4.
Chem Sci ; 13(11): 3256-3262, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35414877

ABSTRACT

In any drug discovery effort, the identification of hits for further optimisation is of crucial importance. For peptide therapeutics, display technologies such as mRNA display have emerged as powerful methodologies to identify these desired de novo hit ligands against targets of interest. The diverse peptide libraries are genetically encoded in these technologies, allowing for next-generation sequencing to be used to efficiently identify the binding ligands. Despite the vast datasets that can be generated, current downstream methodologies, however, are limited by low throughput validation processes, including hit prioritisation, peptide synthesis, biochemical and biophysical assays. In this work we report a highly efficient strategy that combines bioinformatic analysis with state-of-the-art high throughput peptide synthesis to identify nanomolar cyclic peptide (CP) ligands of the human glucose-dependent insulinotropic peptide receptor (hGIP-R). Furthermore, our workflow is able to discriminate between functional and remote binding non-functional ligands. Efficient structure-activity relationship analysis (SAR) combined with advanced in silico structural studies allow deduction of a thorough and holistic binding model which informs further chemical optimisation, including efficient half-life extension. We report the identification and design of the first de novo, GIP-competitive, incretin receptor family-selective CPs, which exhibit an in vivo half-life up to 10.7 h in rats. The workflow should be generally applicable to any selection target, improving and accelerating hit identification, validation, characterisation, and prioritisation for therapeutic development.

5.
Commun Biol ; 4(1): 980, 2021 08 18.
Article in English | MEDLINE | ID: mdl-34408246

ABSTRACT

Most single point mutations destabilize folded proteins. Mutations that stabilize a protein typically only have a small effect and multiple mutations are often needed to substantially increase the stability. Multiple point mutations may act synergistically on the stability, and it is often not straightforward to predict their combined effect from the individual contributions. Here, we have applied an efficient in-cell assay in E. coli to select variants of the barley chymotrypsin inhibitor 2 with increased stability. We find two variants that are more than 3.8 kJ mol-1 more stable than the wild-type. In one case, the increased stability is the effect of the single substitution D55G. The other case is a double mutant, L49I/I57V, which is 5.1 kJ mol-1 more stable than the sum of the effects of the individual mutations. In addition to demonstrating the strength of our selection system for finding stabilizing mutations, our work also demonstrate how subtle conformational effects may modulate stability.


Subject(s)
Escherichia coli/genetics , Gene Library , Hordeum/genetics , Peptides/genetics , Plant Proteins/genetics , Point Mutation , Escherichia coli/metabolism , Hordeum/metabolism , Peptides/metabolism , Plant Proteins/metabolism
6.
J Gen Physiol ; 152(7)2020 07 06.
Article in English | MEDLINE | ID: mdl-32342093

ABSTRACT

Polyamines such as spermidine and spermine are found in nearly all cells, at concentrations ranging up to 0.5 mM. These cations are endogenous regulators of cellular K+ efflux, binding tightly in the pores of inwardly rectifying K+ (Kir) channels in a voltage-dependent manner. Although the voltage dependence of Kir channel polyamine blockade is thought to arise at least partially from the energetically coupled movements of polyamine and K+ ions through the pore, the nature of physical interactions between these molecules is unclear. Here we analyze the polyamine-blocking mechanism in the model K+ channel MthK, using a combination of electrophysiology and computation. Spermidine (SPD3+) and spermine (SPM4+) each blocked current through MthK channels in a voltage-dependent manner, and blockade by these polyamines was described by a three-state kinetic scheme over a wide range of polyamine concentrations. In the context of the scheme, both SPD3+ and SPM4+ access a blocking site with similar effective gating valences (0.84 ± 0.03 e0 for SPD3+ and 0.99 ± 0.04 e0 for SPM4+), whereas SPM4+ binds in the blocked state with an ∼20-fold higher affinity than SPD3+ (Kd = 28.1 ± 3.1 µM for SPD3+ and 1.28 ± 0.20 µM for SPM4+), consistent with a free energy difference of 1.8 kcal/mol. Molecular simulations of the MthK pore in complex with either SPD3+ or SPM4+ are consistent with the leading amine interacting with the hydroxyl groups of T59, at the selectivity filter threshold, with access to this site governed by outward movement of K+ ions. These coupled movements can account for a large fraction of the voltage dependence of blockade. In contrast, differences in binding energetics between SPD3+ and SPM4+ may arise from distinct electrostatic interactions between the polyamines and carboxylate oxygens on the side chains of E92 and E96, located in the pore-lining helix.


Subject(s)
Polyamines , Potassium Channels, Inwardly Rectifying , Electrophysiological Phenomena , Kinetics , Potassium , Potassium Channels, Inwardly Rectifying/physiology , Spermidine , Spermine
7.
Biophys J ; 118(4): 861-872, 2020 02 25.
Article in English | MEDLINE | ID: mdl-31630811

ABSTRACT

Despite the sequence homology between acid-sensing ion channels (ASICs) and epithelial sodium channel (ENaCs), these channel families display very different functional characteristics. Whereas ASICs are gated by protons and show a relatively low degree of selectivity for sodium over potassium, ENaCs are constitutively active and display a remarkably high degree of sodium selectivity. To decipher if some of the functional diversity originates from differences within the transmembrane helices (M1 and M2) of both channel families, we turned to a combination of computational and functional interrogations, using statistical coupling analysis and mutational studies on mouse ASIC1a. The coupling analysis suggests that the relative position of M1 and M2 in the upper part of the pore domain is likely to remain constant during the ASIC gating cycle, whereas they may undergo relative movements in the lower part. Interestingly, our data suggest that to account for coupled residue pairs being in close structural proximity, both domain-swapped and nondomain-swapped ASIC M2 conformations need to be considered. Such conformational flexibility is consistent with structural work, which suggested that the lower part of M2 can adopt both domain-swapped and nondomain-swapped conformations. Overall, mutations to residues in the middle and lower pore were more likely to affect gating and/or ion selectivity than those in the upper pore. Indeed, disrupting the putative interaction between a highly conserved Trp/Glu residue pair in the lower pore is detrimental to gating and selectivity, although this interaction might occur in both domain-swapped and nonswapped conformations. Finally, our results suggest that the greater number of larger, aromatic side chains in the ENaC M2 helix may contribute to the constitutive activity of these channels at a resting pH. Together, the data highlight differences in the transmembrane domains of these closely related ion channels that may help explain some of their distinct functional properties.


Subject(s)
Acid Sensing Ion Channels , Epithelial Sodium Channels , Acid Sensing Ion Channels/genetics , Acid Sensing Ion Channels/metabolism , Animals , Mice , Molecular Conformation , Protons , Sodium/metabolism
8.
Chembiochem ; 21(10): 1510-1516, 2020 05 15.
Article in English | MEDLINE | ID: mdl-31859426

ABSTRACT

The mechanism of action of quaternary ammonium compound (QAC) antiseptics has long been assumed to be straightforward membrane disruption, although the process of approaching and entering the membrane has little modeling precedent. Furthermore, questions have more recently arisen regarding bacterial resistance mechanisms, and why select classes of QACs (specifically, multicationic QACs) are less prone to resistance. In order to better understand such subtleties, a series of molecular dynamics simulations were utilized to help identify these molecular determinants, directly comparing mono-, bis-, and triscationic QACs in simulated membrane intercalation models. Three distinct membranes were simulated, mimicking the surfaces of Escherichia coli and Staphylococcus aureus, as well as a neutral phospholipid control. By analyzing the resulting trajectories in the form of a timeseries analysis, insight was gleaned regarding the significant steps and interactions involved in the destabilization of phospholipid bilayers within the bacterial membranes. Finally, to more specifically probe the effect of the hydrophobic section of the amphiphile that presumably penetrates the membrane, a series of alkyl- and ester-based biscationic quaternary ammonium compounds were prepared, tested for antimicrobial activity against both Gram-positive and Gram-negative bacteria, and modeled.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cell Membrane/chemistry , Computational Biology/methods , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Lipid Bilayers/chemistry , Quaternary Ammonium Compounds/pharmacology , Membrane Lipids/chemistry , Surface Properties
9.
J Gen Physiol ; 150(11): 1554-1566, 2018 11 05.
Article in English | MEDLINE | ID: mdl-30333107

ABSTRACT

The transient receptor potential channel vanilloid type 1 (TRPV1) is activated by a variety of endogenous and exogenous stimuli and is involved in nociception and body temperature regulation. Although the structure of TRPV1 has been experimentally determined in both the closed and open states, very little is known about its activation mechanism. In particular, the conformational changes that occur in the pore domain and result in ionic conduction have not yet been identified. Here we suggest a hypothetical molecular mechanism for TRPV1 activation, which involves rotation of a conserved asparagine in S6 from a position facing the S4-S5 linker toward the pore. This rotation is associated with hydration of the pore and dehydration of the four peripheral cavities located between each S6 and S4-S5 linker. In light of our hypothesis, we perform bioinformatics analyses of TRP and other evolutionary related ion channels, evaluate newly available structures, and reexamine previously reported water accessibility and mutagenesis experiments. These analyses provide several independent lines of evidence to support our hypothesis. Finally, we show that our proposed molecular mechanism is compatible with the prevailing theory that the selectivity filter acts as a secondary gate in TRPV1.


Subject(s)
TRPV Cation Channels/metabolism , Asparagine , Molecular Dynamics Simulation , Protein Conformation , Rotation
10.
Mol Cell ; 72(1): 19-36.e8, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30244836

ABSTRACT

Mutations in the tumor suppressor SPOP (speckle-type POZ protein) cause prostate, breast, and other solid tumors. SPOP is a substrate adaptor of the cullin3-RING ubiquitin ligase and localizes to nuclear speckles. Although cancer-associated mutations in SPOP interfere with substrate recruitment to the ligase, mechanisms underlying assembly of SPOP with its substrates in liquid nuclear bodies and effects of SPOP mutations on assembly are poorly understood. Here, we show that substrates trigger phase separation of SPOP in vitro and co-localization in membraneless organelles in cells. Enzymatic activity correlates with cellular co-localization and in vitro mesoscale assembly formation. Disease-associated SPOP mutations that lead to the accumulation of proto-oncogenic proteins interfere with phase separation and co-localization in membraneless organelles, suggesting that substrate-directed phase separation of this E3 ligase underlies the regulation of ubiquitin-dependent proteostasis.


Subject(s)
Cell Compartmentation/genetics , Neoplasms/genetics , Nuclear Proteins/genetics , Proteostasis/genetics , Repressor Proteins/genetics , Cell Line, Tumor , Humans , Mutation , Neoplasms/pathology , Ubiquitin/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitination/genetics
11.
J Gen Physiol ; 150(9): 1299-1316, 2018 09 03.
Article in English | MEDLINE | ID: mdl-30018038

ABSTRACT

Propofol is widely used in the clinic for the induction and maintenance of general anesthesia. As with most general anesthetics, however, our understanding of its mechanism of action remains incomplete. Local and general anesthetics largely inhibit voltage-gated Na+ channels (Navs) by inducing an apparent stabilization of the inactivated state, associated in some instances with pore block. To determine the biophysical and molecular basis of propofol action in Navs, we investigated NaChBac and NavMs, two prokaryotic Navs with distinct voltage dependencies and gating kinetics, by whole-cell patch clamp electrophysiology in the absence and presence of propofol at clinically relevant concentrations (2-10 µM). In both Navs, propofol induced a hyperpolarizing shift of the pre-pulse inactivation curve without any significant effects on recovery from inactivation at strongly hyperpolarized voltages, demonstrating that propofol does not stabilize the inactivated state. Moreover, there was no evidence of fast or slow pore block by propofol in a non-inactivating NaChBac mutant (T220A). Propofol also induced hyperpolarizing shifts of the conductance-voltage relationships with negligible effects on the time constants of deactivation at hyperpolarized voltages, indicating that propofol does not stabilize the open state. Instead, propofol decreases the time constants of macroscopic activation and inactivation. Adopting a kinetic scheme of Nav gating that assumes preferential closed-state recovery from inactivation, a 1.7-fold acceleration of the rate constant of activation and a 1.4-fold acceleration of the rate constant of inactivation were sufficient to reproduce experimental observations with computer simulations. In addition, molecular dynamics simulations and molecular docking suggest that propofol binding involves interactions with gating machinery in the S4-S5 linker and external pore regions. Our findings show that propofol is primarily a positive gating modulator of prokaryotic Navs, which ultimately inhibits the channels by promoting activation-coupled inactivation.


Subject(s)
Bacterial Proteins/drug effects , Hypnotics and Sedatives/pharmacology , Propofol/pharmacology , Sodium Channels/drug effects , Voltage-Gated Sodium Channels/drug effects , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , HEK293 Cells , Humans , Kinetics , Mutation , Patch-Clamp Techniques , Sodium Channels/genetics , Sodium Channels/metabolism , Voltage-Gated Sodium Channels/metabolism
12.
J Gen Physiol ; 150(9): 1317-1331, 2018 09 03.
Article in English | MEDLINE | ID: mdl-30018039

ABSTRACT

Voltage-gated sodium (NaV) channels are important targets of general anesthetics, including the intravenous anesthetic propofol. Electrophysiology studies on the prokaryotic NaV channel NaChBac have demonstrated that propofol promotes channel activation and accelerates activation-coupled inactivation, but the molecular mechanisms of these effects are unclear. Here, guided by computational docking and molecular dynamics simulations, we predict several propofol-binding sites in NaChBac. We then strategically place small fluorinated probes at these putative binding sites and experimentally quantify the interaction strengths with a fluorinated propofol analogue, 4-fluoropropofol. In vitro and in vivo measurements show that 4-fluoropropofol and propofol have similar effects on NaChBac function and nearly identical anesthetizing effects on tadpole mobility. Using quantitative analysis by 19F-NMR saturation transfer difference spectroscopy, we reveal strong intermolecular cross-relaxation rate constants between 4-fluoropropofol and four different regions of NaChBac, including the activation gate and selectivity filter in the pore, the voltage sensing domain, and the S4-S5 linker. Unlike volatile anesthetics, 4-fluoropropofol does not bind to the extracellular interface of the pore domain. Collectively, our results show that propofol inhibits NaChBac at multiple sites, likely with distinct modes of action. This study provides a molecular basis for understanding the net inhibitory action of propofol on NaV channels.


Subject(s)
Bacterial Proteins/drug effects , Hypnotics and Sedatives/pharmacology , Propofol/pharmacology , Sodium Channels/drug effects , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Fluorine , HEK293 Cells , Humans , Larva , Magnetic Resonance Spectroscopy , Patch-Clamp Techniques , Sodium Channels/genetics , Sodium Channels/metabolism , Xenopus laevis
13.
Proc Natl Acad Sci U S A ; 115(18): 4655-4660, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29666261

ABSTRACT

Mitogen-activated protein kinases, which include p38, are essential for cell differentiation and autophagy. The current model for p38 activation involves activation-loop phosphorylation with subsequent substrate binding leading to substrate phosphorylation. Despite extensive efforts, the molecular mechanism of activation remains unclear. Here, using NMR spectroscopy, we show how the modulation of protein dynamics across timescales activates p38. We find that activation-loop phosphorylation does not change the average conformation of p38; rather it quenches the loop ps-ns dynamics. We then show that substrate binding to nonphosphorylated and phosphorylated p38 results in uniform µs-ms backbone dynamics at catalytically essential regions and across the entire molecule, respectively. Together, these results show that phosphorylation and substrate binding flatten the energy landscape of the protein, making essential elements of allostery and activation dynamically accessible. The high degree of structural conservation among ser/thr kinases suggests that elements of this mechanism may be conserved across the kinase family.


Subject(s)
Molecular Dynamics Simulation , p38 Mitogen-Activated Protein Kinases/chemistry , Allosteric Regulation/physiology , Enzyme Activation/physiology , Humans , Nuclear Magnetic Resonance, Biomolecular , Phosphorylation/physiology , Protein Structure, Secondary , p38 Mitogen-Activated Protein Kinases/metabolism
14.
Handb Exp Pharmacol ; 246: 33-49, 2018.
Article in English | MEDLINE | ID: mdl-29464397

ABSTRACT

Voltage-gated sodium channel (VGSC) beta (ß) subunits have been called the "overachieving" auxiliary ion channel subunit. Indeed, these subunits regulate the trafficking of the sodium channel complex at the plasma membrane and simultaneously tune the voltage-dependent properties of the pore-forming alpha-subunit. It is now known that VGSC ß-subunits are capable of similar modulation of multiple isoforms of related voltage-gated potassium channels, suggesting that their abilities extend into the broader voltage-gated channels. The gene family for these single transmembrane immunoglobulin beta-fold proteins extends well beyond the traditional VGSC ß1-ß4 subunit designation, with deep roots into the cell adhesion protein family and myelin-related proteins - where inherited mutations result in a myriad of electrical signaling disorders. Yet, very little is known about how VGSC ß-subunits support protein trafficking pathways, the basis for their modulation of voltage-dependent gating, and, ultimately, their role in shaping neuronal excitability. An evolutionary approach can be useful in yielding new clues to such functions as it provides an unbiased assessment of protein residues, folds, and functions. An approach is described here which indicates the greater emergence of the modern ß-subunits roughly 400 million years ago in the early neurons of Bilateria and bony fish, and the unexpected presence of distant homologues in bacteriophages. Recent structural breakthroughs containing α and ß eukaryotic sodium channels containing subunits suggest a novel role for a highly conserved polar contact that occurs within the transmembrane segments. Overall, a mixture of approaches will ultimately advance our understanding of the mechanism for ß-subunit interactions with voltage-sensor containing ion channels and membrane proteins.


Subject(s)
Evolution, Molecular , Voltage-Gated Sodium Channel beta Subunits/physiology , Animals , Conserved Sequence , Humans , Protein Subunits/physiology , Voltage-Gated Sodium Channel beta Subunits/chemistry
15.
J Phys Chem Lett ; 9(6): 1260-1264, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29439562

ABSTRACT

The nonselective cation channel TRPV1 is responsible for transducing noxious stimuli into action potentials propagating through peripheral nerves. It is activated by temperatures greater than 43 °C, while remaining completely nonconductive at temperatures lower than this threshold. The origin of this sharp response, which makes TRPV1 a biological temperature sensor, is not understood. Here we used molecular dynamics simulations and free energy calculations to characterize the molecular determinants of the transition between nonconductive and conductive states. We found that hydration of the pore and thus ion permeation depends critically on the polar character of its molecular surface: in this narrow hydrophobic enclosure, the motion of a polar side-chain is sufficient to stabilize either the dry or wet state. The conformation of this side-chain is in turn coupled to the hydration state of four peripheral cavities, which undergo a dewetting transition at the activation temperature.


Subject(s)
Molecular Dynamics Simulation , TRPV Cation Channels/chemistry , TRPV Cation Channels/metabolism , Hydrophobic and Hydrophilic Interactions , Movement , Porosity , Protein Conformation , Thermodynamics
16.
J Biol Chem ; 293(14): 4981-4992, 2018 04 06.
Article in English | MEDLINE | ID: mdl-29371400

ABSTRACT

Voltage-gated, sodium ion-selective channels (NaV) generate electrical signals contributing to the upstroke of the action potential in animals. NaVs are also found in bacteria and are members of a larger family of tetrameric voltage-gated channels that includes CaVs, KVs, and NaVs. Prokaryotic NaVs likely emerged from a homotetrameric Ca2+-selective voltage-gated progenerator, and later developed Na+ selectivity independently. The NaV signaling complex in eukaryotes contains auxiliary proteins, termed beta (ß) subunits, which are potent modulators of the expression profiles and voltage-gated properties of the NaV pore, but it is unknown whether they can functionally interact with prokaryotic NaV channels. Herein, we report that the eukaryotic NaVß1-subunit isoform interacts with and enhances the surface expression as well as the voltage-dependent gating properties of the bacterial NaV, NaChBac in Xenopus oocytes. A phylogenetic analysis of the ß-subunit gene family proteins confirms that these proteins appeared roughly 420 million years ago and that they have no clear homologues in bacterial phyla. However, a comparison between eukaryotic and bacterial NaV structures highlighted the presence of a conserved fold, which could support interactions with the ß-subunit. Our electrophysiological, biochemical, structural, and bioinformatics results suggests that the prerequisites for ß-subunit regulation are an evolutionarily stable and intrinsic property of some voltage-gated channels.


Subject(s)
Voltage-Gated Sodium Channels/metabolism , Amino Acid Sequence , Animals , Bacteria/chemistry , Bacteria/genetics , Bacteria/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Evolution, Molecular , HEK293 Cells , Humans , Models, Molecular , Phylogeny , Protein Conformation , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Rats , Voltage-Gated Sodium Channels/chemistry , Voltage-Gated Sodium Channels/genetics , Xenopus
17.
Proc Natl Acad Sci U S A ; 114(50): E10612-E10621, 2017 12 12.
Article in English | MEDLINE | ID: mdl-29183970

ABSTRACT

Patterns of interacting amino acids are so preserved within protein families that the sole analysis of evolutionary comutations can identify pairs of contacting residues. It is also known that evolution conserves functional dynamics, i.e., the concerted motion or displacement of large protein regions or domains. Is it, therefore, possible to use a pure sequence-based analysis to identify these dynamical domains? To address this question, we introduce here a general coevolutionary coupling analysis strategy and apply it to a curated sequence database of hundreds of protein families. For most families, the sequence-based method partitions amino acids into a few clusters. When viewed in the context of the native structure, these clusters have the signature characteristics of viable protein domains: They are spatially separated but individually compact. They have a direct functional bearing too, as shown for various reference cases. We conclude that even large-scale structural and functionally related properties can be recovered from inference methods applied to evolutionary-related sequences. The method introduced here is available as a software package and web server (spectrus.sissa.it/spectrus-evo_webserver).


Subject(s)
Amino Acids/genetics , Evolution, Molecular , Protein Conformation , Software , Amino Acids/chemistry , Animals , Humans , Molecular Dynamics Simulation , Sequence Analysis, Protein/methods
18.
Proc Natl Acad Sci U S A ; 113(48): 13762-13767, 2016 11 29.
Article in English | MEDLINE | ID: mdl-27856739

ABSTRACT

Voltage-gated sodium channels (NaV) play an important role in general anesthesia. Electrophysiology measurements suggest that volatile anesthetics such as isoflurane inhibit NaV by stabilizing the inactivated state or altering the inactivation kinetics. Recent computational studies suggested the existence of multiple isoflurane binding sites in NaV, but experimental binding data are lacking. Here we use site-directed placement of 19F probes in NMR experiments to quantify isoflurane binding to the bacterial voltage-gated sodium channel NaChBac. 19F probes were introduced individually to S129 and L150 near the S4-S5 linker, L179 and S208 at the extracellular surface, T189 in the ion selectivity filter, and all phenylalanine residues. Quantitative analyses of 19F NMR saturation transfer difference (STD) spectroscopy showed a strong interaction of isoflurane with S129, T189, and S208; relatively weakly with L150; and almost undetectable with L179 and phenylalanine residues. An orientation preference was observed for isoflurane bound to T189 and S208, but not to S129 and L150. We conclude that isoflurane inhibits NaChBac by two distinct mechanisms: (i) as a channel blocker at the base of the selectivity filter, and (ii) as a modulator to restrict the pivot motion at the S4-S5 linker and at a critical hinge that controls the gating and inactivation motion of S6.


Subject(s)
Fluorine/chemistry , Ions/chemistry , Sodium/chemistry , Voltage-Gated Sodium Channels/chemistry , Binding Sites , Biophysical Phenomena , Ion Channel Gating/genetics , Isoflurane/chemistry , Kinetics , Magnetic Resonance Spectroscopy , Sodium/metabolism , Voltage-Gated Sodium Channels/genetics
19.
Sci Rep ; 6: 31377, 2016 08 11.
Article in English | MEDLINE | ID: mdl-27510265

ABSTRACT

The collective behavior of a large number of degrees of freedom can be often described by a handful of variables. This observation justifies the use of dimensionality reduction approaches to model complex systems and motivates the search for a small set of relevant "collective" variables. Here, we analyze this issue by focusing on the optimal number of variable needed to capture the salient features of a generic dataset and develop a novel estimator for the intrinsic dimension (ID). By approximating geodesics with minimum distance paths on a graph, we analyze the distribution of pairwise distances around the maximum and exploit its dependency on the dimensionality to obtain an ID estimate. We show that the estimator does not depend on the shape of the intrinsic manifold and is highly accurate, even for exceedingly small sample sizes. We apply the method to several relevant datasets from image recognition databases and protein multiple sequence alignments and discuss possible interpretations for the estimated dimension in light of the correlations among input variables and of the information content of the dataset.


Subject(s)
Pattern Recognition, Automated/methods , Proteins/genetics , Algorithms , Databases, Protein , Sequence Alignment
20.
J Chem Theory Comput ; 11(6): 2776-82, 2015 Jun 09.
Article in English | MEDLINE | ID: mdl-26575570

ABSTRACT

Intrinsically disordered proteins (IDPs), which are expected to be largely unstructured under physiological conditions, make up a large fraction of eukaryotic proteins. Molecular dynamics simulations have been utilized to probe structural characteristics of these proteins, which are not always easily accessible to experiments. However, exploration of the conformational space by brute force molecular dynamics simulations is often limited by short time scales. Present literature provides a number of enhanced sampling methods to explore protein conformational space in molecular simulations more efficiently. In this work, we present a comparison of two enhanced sampling methods: temperature replica exchange molecular dynamics and bias exchange metadynamics. By investigating both the free energy landscape as a function of pertinent order parameters and the per-residue secondary structures of an IDP, namely, human islet amyloid polypeptide, we found that the two methods yield similar results as expected. We also highlight the practical difference between the two methods by describing the path that we followed to obtain both sets of data.


Subject(s)
Islet Amyloid Polypeptide/chemistry , Molecular Dynamics Simulation , Temperature , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...