Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
J Pharm Biomed Anal ; 203: 114206, 2021 Sep 05.
Article in English | MEDLINE | ID: mdl-34146950

ABSTRACT

Modern supercritical fluid chromatography (SFC) is now a well-established technique, especially in the field of pharmaceutical analysis. We recently demonstrated the transferability and the reproducibility of a SFC-UV method for pharmaceutical impurities by means of an inter-laboratory study. However, as this study involved only one brand of SFC instrumentation (Waters®), the present study extends the purpose to multi-instrumentation evaluation. Specifically, three instrument types, namely Agilent®, Shimadzu®, and Waters®, were included through 21 laboratories (n = 7 for each instrument). First, method transfer was performed to assess the separation quality and to set up the specific instrument parameters of Agilent® and Shimadzu® instruments. Second, the inter-laboratory study was performed following a protocol defined by the sending lab. Analytical results were examined regarding consistencies within- and between-laboratories criteria. Afterwards, the method reproducibility was estimated taking into account variances in replicates, between-days and between-laboratories. Reproducibility variance was larger than that observed during the first study involving only one single type of instrumentation. Indeed, we clearly observed an 'instrument type' effect. Moreover, the reproducibility variance was larger when considering all instruments than each type separately which can be attributed to the variability induced by the instrument configuration. Nevertheless, repeatability and reproducibility variances were found to be similar than those described for LC methods; i.e. reproducibility as %RSD was around 15 %. These results highlighted the robustness and the power of modern analytical SFC technologies to deliver accurate results for pharmaceutical quality control analysis.


Subject(s)
Chromatography, Supercritical Fluid , Pharmaceutical Preparations , Quality Control , Reproducibility of Results
2.
J Pharm Biomed Anal ; 161: 414-424, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-30216790

ABSTRACT

Supercritical Fluid Chromatography (SFC) has known a strong regain of interest for the last 10 years, especially in the field of pharmaceutical analysis. Besides the development and validation of the SFC method in one individual laboratory, it is also important to demonstrate its applicability and transferability to various laboratories around the world. Therefore, an inter-laboratory study was conducted and published for the first time in SFC, to assess method reproducibility, and evaluate whether this chromatographic technique could become a reference method for quality control (QC) laboratories. This study involved 19 participating laboratories from 4 continents and 9 different countries. It included 5 academic groups, 3 demonstration laboratories at analytical instrument companies, 10 pharmaceutical companies and 1 food company. In the initial analysis of the study results, consistencies within- and between-laboratories were deeply examined. In the subsequent analysis, the method reproducibility was estimated taking into account variances in replicates, between-days and between-laboratories. The results obtained were compared with the literature values for liquid chromatography (LC) in the context of impurities determination. Repeatability and reproducibility variances were found to be similar or better than those described for LC methods, and highlighted the adequacy of the SFC method for QC analyses. The results demonstrated the excellent and robust quantitative performance of SFC. Consequently, this complementary technique is recognized on equal merit to other chromatographic techniques.


Subject(s)
Chromatography, Supercritical Fluid/standards , Drug Contamination/prevention & control , International Cooperation , Chromatography, Liquid/methods , Chromatography, Liquid/standards , Chromatography, Supercritical Fluid/methods , Quality Control , Reproducibility of Results
3.
Article in English | MEDLINE | ID: mdl-29518631

ABSTRACT

The MS hyphenation performance of UniSpray®, a new design of atmospheric pressure ionization source was evaluated in both SFC and RPLC modes. Sensitivity, stability, versatility and matrix effects offered by the UniSpray were assessed in positive and negative ionization modes and systematically compared to an electrospray source (ESI) using 120 natural compounds covering an extended chemical space. In a first instance, a multivariate approach was used to screen and optimize the UniSpray source settings to maximize detection sensitivity. The position of the source capillary against the fixed charged rod was highlighted as the major parameter affecting the detection sensitivity. The sensitivity improvement in Unispray vs. ESI strongly depends on the compounds chemical class and the chromatographic mode. For a few compounds (i.e. anabasine, theanine, caproic acid, fumaric acid and protopanaxatriol), up to a 10-fold increase in sensitivity was noticed with UniSpray. The signal stability over multiple injections was also found to be equivalent between both sources with RSD values on peak intensity lower than 14% on >100 injections, in both chromatographic modes. On complex plant extract, the matrix effects occurring from the secondary metabolites were also found to be comparable between ESI and UniSpray, at least in the positive ionization mode. However, a systematic decrease of MS signal intensity was observed in SFC mode when compounds were ionized using UniSpray in the negative ion mode.


Subject(s)
Chromatography, Liquid/methods , Chromatography, Supercritical Fluid/methods , Mass Spectrometry/methods , Plant Extracts/analysis , Atmospheric Pressure , Plant Extracts/chemistry , Reproducibility of Results , Sensitivity and Specificity
4.
J Chromatogr A ; 1511: 122-131, 2017 Aug 18.
Article in English | MEDLINE | ID: mdl-28689578

ABSTRACT

This paper focuses on the possibility to inject large volumes (up to 10µL) in ultra-high performance supercritical fluid chromatography (UHPSFC) under generic gradient conditions. Several injection and method parameters have been individually evaluated (i.e. analyte concentration, injection volume, initial percentage of co-solvent in the gradient, nature of the weak needle wash solvent, nature of the sample diluent, nature of the column and of the analyte). The most critical parameters were further investigated using in a multivariate approach. The overall results suggested that several aprotic solvents including methyl tert-butyl ether (MTBE), dichloromethane, acetonitrile or cyclopentyl methyl ether (CPME) were well adapted for the injection of large volume in UHPSFC, while MeOH was generally the worst alternative. However, the nature of the stationary phase also had a strong impact and some of these diluents did not perform equally on each column. This was due to the existence of a competition in the adsorption of the analyte and the diluent on the stationary phase. This observation introduced the idea that the sample diluent should not only be chosen according to the analyte but also to the column chemistry to limit the interactions between the diluent and the ligands. Other important characteristics of the "ideal" SFC sample diluent were finally highlighted. Aprotic solvents with low viscosity are preferable to avoid strong solvent effects and viscous fingering, respectively. In the end, the authors suggest that the choice of the sample diluent should be part of the method development, as a function of the analyte and the selected stationary phase.


Subject(s)
Chromatography, Supercritical Fluid/methods , Solvents/chemistry , Acetonitriles/chemistry , Methyl Ethers/chemistry , Methylene Chloride/chemistry , Pharmaceutical Preparations/analysis
5.
Anal Chem ; 89(14): 7615-7622, 2017 07 18.
Article in English | MEDLINE | ID: mdl-28578567

ABSTRACT

Analytical solutions enabling the quantification of circulating levels of liposoluble micronutrients such as vitamins and carotenoids are currently limited to either single or a reduced panel of analytes. The requirement to use multiple approaches hampers the investigation of the biological variability on a large number of samples in a time and cost efficient manner. With the goal to develop high-throughput and robust quantitative methods for the profiling of micronutrients in human plasma, we introduce a novel, validated workflow for the determination of 14 fat-soluble vitamins and carotenoids in a single run. Automated supported liquid extraction was optimized and implemented to simultaneously parallelize 48 samples in 1 h, and the analytes were measured using ultrahigh-performance supercritical fluid chromatography coupled to tandem mass spectrometry in less than 8 min. An improved mass spectrometry interface hardware was built up to minimize the post-decompression volume and to allow better control of the chromatographic effluent density on its route toward and into the ion source. In addition, a specific make-up solvent condition was developed to ensure both analytes and matrix constituents solubility after mobile phase decompression. The optimized interface resulted in improved spray plume stability and conserved matrix compounds solubility leading to enhanced hyphenation robustness while ensuring both suitable analytical repeatability and improved the detection sensitivity. The overall developed methodology gives recoveries within 85-115%, as well as within and between-day coefficient of variation of 2 and 14%, respectively.


Subject(s)
Carotenoids/blood , Fats/chemistry , Vitamins/blood , Chromatography, Supercritical Fluid , Humans , Molecular Structure , Solubility , Spectrometry, Mass, Electrospray Ionization
6.
J Chromatogr A ; 1504: 91-104, 2017 Jun 30.
Article in English | MEDLINE | ID: mdl-28521953

ABSTRACT

Plant secondary metabolites are an almost unlimited reservoir of potential bioactive compounds. In view of the wide chemical space covered by natural compounds, their comprehensive analysis requires multiple and complementary approaches. In this study, numerous chromatographic conditions were tested for the analysis of a set of 120 representative natural compounds covering a wide polarity range (18 log P units). The experiments were performed on 59 different conditions involving 29 RPLC and HILIC dedicated stationary phases, as well as more exotic mixed mode columns. The best RPLC and HILIC conditions were determined using Derringer's desirability functions, based on various criteria (i.e. retention, peak shape, distribution of compounds during the gradient…). After this first selection, only the most promising conditions were kept (19 in RPLC and 11 in HILIC). The selectivity complementarity among each chromatographic mode was assessed by principal component analysis (PCA) and hierarchical cluster analysis (HCA). In RPLC, a pentabromobenzyl (PBrBz) stationary phase was identified as particularly versatile and could constitute an elegant first intention screening column. Two additional conditions allowed to extend the range of natural compounds space that can be analyzed, while offering better selectivity for basic analytes (hybrid silica graft with C8 moiety operated at pH 9 (Hyb C8)) and acidic compounds (positively charged hybrid silica graft with pentafluorophenyl moiety (Hyb+ PFPh). Although less generic in terms of amenable compounds, an ion exchange/RP mixed mode stationary phase (MM TriP1) offered notably enhanced retention of more polar analytes under RPLC conditions. With these four conditions, 89% of the natural substances were detected by LC-MS with acceptable retentions and peak shapes. In HILIC, four acceptable and complementary conditions were also highlighted. Both Syncro-Z (zwitterionic HILIC phase) and Diol columns were found to offer balanced retention and selectivity for most of the polar compounds (log DpH3<1.0). These two columns could be advantageously complemented by hybrid Amide column operated at pH 3 and Amino stationary phase at pH 5, to further enhance both retention and selectivity of polar basic and acidic species, respectively.


Subject(s)
Chromatography, Liquid/instrumentation , Organic Chemicals/chemistry , Chromatography, Liquid/methods , Hydrophobic and Hydrophilic Interactions , Mass Spectrometry , Silicon Dioxide/chemistry
7.
J Chromatogr A ; 1450: 101-11, 2016 Jun 10.
Article in English | MEDLINE | ID: mdl-27156735

ABSTRACT

Secondary metabolites are an almost unlimited reservoir of potential bioactive compounds. In view of the wide chemical space covered by natural compounds, their comprehensive analysis requires multiple cutting-edge approaches. This study evaluates the applicability of ultra-high performance supercritical fluid chromatography coupled to quadrupole-time-of-flight mass spectrometry (UHPSFC-QqToF-MS) as an analytical strategy for plant metabolites profiling. Versatility of this analytical platform was first assessed using 120 highly diverse natural compounds (according to lipophilicity, hydrogen bond capability, acid-base properties, molecular mass and chemical structure) that were screened on a set of 15 rationally chosen stationary phase chemistries. UHPSFC-QqToF-MS provides a suitable analytical solution for 88% of the tested compounds. Three stationary phases (Diol, not endcapped C18 and 2-EP) were highlighted as particularly polyvalent, since they allow suitable elution of 101 out of 120 natural compounds. The systematic evaluation of retention and selectivity of natural compounds further underlined the suitability of these three columns for the separation of natural compounds. This reduced set of key stationary phases constitutes a basis for untargeted scouting analysis and method development. Even if they were less versatile, stationary phases such as endcapped T3C18, polar P-PFP, were nevertheless found to provide extended selectivity for specific natural molecules sub-classes. Finally, the identified polyvalent conditions were successfully applied for the analysis of complex polar and non-polar plant extracts. These first experimental hits demonstrate the full applicability and potential of UHPSFC-QqToF-MS for plant metabolite profiling.


Subject(s)
Biological Products/analysis , Chromatography, Supercritical Fluid/methods , Mass Spectrometry/methods , Plant Extracts/chemistry , Biological Products/chemistry , Biological Products/metabolism , Plant Extracts/metabolism , Secondary Metabolism
8.
Anal Chim Acta ; 853: 637-646, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25467513

ABSTRACT

The conditions for the analysis of selected doping substances by UHPSFC-MS/MS were optimized to ensure suitable peak shapes and maximized MS responses. A representative mixture of 31 acidic and basic doping agents was analyzed, in both ESI+ and ESI- modes. The best compromise for all compounds in terms of MS sensitivity and chromatographic performance was obtained when adding 2% water and 10mM ammonium formate in the CO2/MeOH mobile phase. Beside mobile phase, the nature of the make-up solvent added for interfacing UHPSFC with MS was also evaluated. Ethanol was found to be the best candidate as it was able to compensate for the negative effect of 2% water addition in ESI- mode and provided a suitable MS response for all doping agents. Sensitivity of the optimized UHPSFC-MS/MS method was finally assessed and compared to the results obtained in conventional UHPLC-MS/MS. Sensitivity was improved by 5-100-fold in UHPSFC-MS/MS vs. UHPLC-MS/MS for 56% of compounds, while only one compound (bumetanide) offered a significantly higher MS response (4-fold) under UHPLC-MS/MS conditions. In the second paper of this series, the optimal conditions for UHPSFC-MS/MS analysis will be employed to screen >100 doping agents in urine matrix and results will be compared to those obtained by conventional UHPLC-MS/MS.


Subject(s)
Chromatography, High Pressure Liquid/methods , Chromatography, Supercritical Fluid/methods , Doping in Sports , Performance-Enhancing Substances/analysis , Tandem Mass Spectrometry/methods , Carbon Dioxide/chemistry , Chromatography, High Pressure Liquid/standards , Chromatography, Supercritical Fluid/standards , Hydrogen-Ion Concentration , Ions/chemistry , Methanol/chemistry , Performance-Enhancing Substances/standards , Reference Standards , Tandem Mass Spectrometry/standards , Water/chemistry
9.
Anal Chim Acta ; 853: 647-659, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25467514

ABSTRACT

The potential and applicability of UHPSFC-MS/MS for anti-doping screening in urine samples were tested for the first time. For this purpose, a group of 110 doping agents with diverse physicochemical properties was analyzed using two separation techniques, namely UHPLC-MS/MS and UHPSFC-MS/MS in both ESI+ and ESI- modes. The two approaches were compared in terms of selectivity, sensitivity, linearity and matrix effects. As expected, very diverse retentions and selectivities were obtained in UHPLC and UHPSFC, proving a good complementarity of these analytical strategies. In both conditions, acceptable peak shapes and MS detection capabilities were obtained within 7 min analysis time, enabling the application of these two methods for screening purposes. Method sensitivity was found comparable for 46% of tested compounds, while higher sensitivity was observed for 21% of tested compounds in UHPLC-MS/MS and for 32% in UHPSFC-MS/MS. The latter demonstrated a lower susceptibility to matrix effects, which were mostly observed as signal suppression. In the case of UHPLC-MS/MS, more serious matrix effects were observed, leading typically to signal enhancement and the matrix effect was also concentration dependent, i.e., more significant matrix effects occurred at the lowest concentrations.


Subject(s)
Chromatography, High Pressure Liquid , Chromatography, Supercritical Fluid , Doping in Sports , Performance-Enhancing Substances/analysis , Anesthetics, Local/analysis , Anesthetics, Local/standards , Antidepressive Agents/analysis , Antidepressive Agents/standards , Chromatography, High Pressure Liquid/standards , Chromatography, Supercritical Fluid/standards , Humans , Ions/chemistry , Performance-Enhancing Substances/standards , Reference Standards , Tandem Mass Spectrometry/standards
10.
J Chromatogr A ; 1371: 244-56, 2014 Dec 05.
Article in English | MEDLINE | ID: mdl-25456603

ABSTRACT

The goal of this study was to evaluate the combination of powerful chromatographic methods and compact single quadrupole MS device for simple in vitro cytochrome P450 (CYP) inhibition assay, instead of more expensive triple quadrupole MS/MS detectors. For this purpose, two modern chromatographic approaches (ultra-high pressure liquid chromatography (UHPLC) and ultra-high performance supercritical fluid chromatography (UHPSFC)) were tested in combination with simple MS detector. To show the applicability for an in vitro CYP-mediated metabolism assay using the cocktail approach, a method was first developed in UHPLC-MS to separate a mixture of 8 probe substrates and 8 CYP-specific metabolites. A screening procedure was initially applied to determine the best combination of a column, an organic modifier and a mobile-phase pH, followed by fine tuning of the conditions (i.e., gradient profile, temperature and pH) using HPLC modelling software. A similar sequential method development procedure was also evaluated for UHPSFC-MS. For method development, where peak tracking is necessary, the use of single quadrupole MS was found to be extremely valuable for following the investigated analytes. Ultimately, a baseline separation of the 16 compounds was achieved in both UHPLC-MS and UHPSFC-MS with an analysis time of less than 7 min. In a second series of experiments, sensitivity was evaluated, and LOQ values were between 2 and 100 ng/mL in UHPLC-MS, while they ranged from 2 to 200 ng/mL in UHPSFC-MS. Based on the concentrations employed for the current in vitro phase I metabolism assay, these LOQ values were appropriate for this type of application. Finally, the two analytical methods were applied to in vitro CYP-dependent metabolism testing. Two well-known phytochemical inhibitors, yohimbine and resveratrol, were investigated, and reliable conclusions were drawn from these experiments with both UHPLC-MS and UHPSFC-MS. At the end, the proposed strategy of optimized chromatography combined with simple MS device has been shown to potentially compete with the widely used combination of generic chromatography and highly selective MS/MS device for simple in vitro CYP inhibition assays. In addition, our analytical method may be easier to use in a routine environment; the instrument cost is significantly reduced and the two developed methods fit for purpose.


Subject(s)
Chromatography, High Pressure Liquid/methods , Chromatography, Supercritical Fluid/methods , In Vitro Techniques , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Cytochrome P-450 Enzyme System/metabolism
11.
J Chromatogr A ; 1339: 174-84, 2014 Apr 25.
Article in English | MEDLINE | ID: mdl-24656541

ABSTRACT

The recent market release of a new generation of supercritical fluid chromatography (SFC) instruments compatible with state-of-the-art columns packed with sub-2µm particles (UHPSFC) has contributed to the reemergence of interest in this technology at the analytical scale. However, to ensure performance competitiveness of this technique with modern analytical standards, a robust hyphenation of UHPSFC to mass spectrometry (MS) is mandatory. UHPSFC-MS hyphenation interface should be able to manage the compressibility of the SFC mobile phase and to preserve as much as possible the chromatographic separation integrity. Although several interfaces can be envisioned, each will have noticeable effects on chromatographic fidelity, flexibility and user-friendliness. In the present study, various interface configurations were evaluated in terms of their impact on chromatographic efficiency and MS detection sensitivity. An interface including a splitter and a make-up solvent inlet was found to be the best compromise and exhibited good detection sensitivity while maintaining more than 75% of the chromatographic efficiency. This interface was also the most versatile in terms of applicable analytical conditions. In addition, an accurate model of the fluidics behavior of this interface was created for a better understanding of the influence of chromatographic settings on its mode of operation. In the second part, the most influential experimental factors affecting MS detection sensitivity were identified and optimized using a design-of-experiment approach. The application of low capillary voltage and high desolvation temperature and drying gas flow rate were required for optimal ESI ionization and nebulization processes. The detection sensitivity achieved using the maximized UHPSFC-ESI-MS/MS conditions for a mixture of basic pharmaceutical compounds showed 4- to 10-fold improvements in peak intensity compared to the best performance achieved by UHPLC-ESI-MS/MS with the same MS detector.


Subject(s)
Chromatography, Supercritical Fluid , Pharmaceutical Preparations/analysis , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Sensitivity and Specificity , Software
12.
J Chromatogr A ; 1314: 288-97, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24070625

ABSTRACT

Recently, there has been a renewed interest in supercritical fluid chromatography (SFC), due to the introduction of state-of-the-art instruments and dedicated columns packed with small particles. However, the achievable kinetic performance and practical possibilities of such modern SFC instruments and columns has not been described in details until now. The goal of the present contribution was to provide some information about the optimal column dimensions (i.e. length, diameter and particle size) suitable for such state-of the-art systems, with respect to extra-column band broadening and system upper pressure limit. In addition, the reliability of the kinetic plot methodology, successfully applied in RPLC, was also evaluated under SFC conditions. Taking into account the system variance, measured at ∼85µL(2), on modern SFC instruments, a column of 3mm I.D. was ideally suited for the current technology, as the loss in efficiency remained reasonable (i.e. less than 10% decrease for k>6). Conversely, these systems struggle with 2.1mm I.D. columns (55% loss in N for k=5). Regarding particle size, columns packed with 5µm particles provided unexpectedly high minimum reduced plate height values (hmin=3.0-3.4), while the 3.5 and 1.7µm packing provided lower reduced plate heights hmin=2.2-2.4 and hmin=2.7-3.2, respectively. Considering the system upper pressure limit, it appears that columns packed with 1.7µm particles give the lowest analysis time for efficiencies up to 40,000-60,000 plates, if the mobile phase composition is in the range of 2-19% MeOH. The 3.5µm particles were attractive for higher efficiencies, particularly when the modifier percentage was above 20%, while 5µm was never kinetically relevant with modern SFC instruments, due to an obvious limitation in terms of upper flow rate value. The present work also confirms that the kinetic plot methodology could be successfully applied to SFC, without the need for isopycnic measurements, as the difference in plate count between predicted and experimental values obtained by coupling several columns in series (up to 400mm) was on average equal to 3-6% and with a maximum of 13%.


Subject(s)
Chromatography, Supercritical Fluid/instrumentation , Kinetics
13.
J Sep Sci ; 36(19): 3141-51, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23897590

ABSTRACT

The goal of this study was to compare the performance of three separation techniques for the analysis of 57 hydrophilic compounds. RPLC, hydrophilic interaction liquid chromatography (HILIC) and subcritical fluid chromatography (SFC) were tested. The comparison was based on the retention, selectivity, peak shape (asymmetry and peak width) and MS sensitivity. As expected, RPLC had some obvious limitations for such classes of compounds, and on average the %ACN required to elute these hydrophilic substances was 4, 7, and 11% ACN at pH 3, 6, and 9, respectively. However, a hybrid polar-embedded C18 phase with an appropriate mobile phase could represent a viable strategy for hydrophilic basic compounds with log D greater than -2 on average. HILIC and SFC were found to be more appropriate for analyzing a large majority of these hydrophilic analytes (~60 and 70% of compounds eluted during the gradient in HILIC and SFC), while maintaining good MS sensitivity. Finally, this work demonstrated the complementarity of the three analytical techniques and showed that the selection of a suitable strategy should mostly be based on physicochemical properties of the analytes (pKa, log D, H-bonding capability, etc.).


Subject(s)
Chromatography, Supercritical Fluid , Chromatography, High Pressure Liquid , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Mass Spectrometry
14.
J Chromatogr A ; 1282: 172-7, 2013 Mar 22.
Article in English | MEDLINE | ID: mdl-23415443

ABSTRACT

The aim of the present work was to compare various separation techniques for the fast analysis of closely-related compounds, including structurally-related compounds, positional isomers, diastereoisomers, Z/E isomers. Three analytical techniques were evaluated, namely ultra high performance liquid chromatography (UHPLC), ultra high performance supercritical fluid chromatography (UHPSFC), both with sub-2µm particles, and capillary electrophoresis (CE) using non-aqueous solvents. To fairly compare the three analytical techniques, only two starting conditions for further method development were considered. All the selected mobile phases or background electrolyte were MS-compatible. As expected, CE often provided excellent results for the analysis of basic compounds but it was difficult to find out conditions that could be widely applied. On the other hand, UHPLC and UHPSFC were more generic and the performance was better than CE for the analysis of neutral and acidic compounds. In all cases, the analysis time was systematically lower than 3min. In conclusion, UHPLC was the most versatile strategy for the analysis of closely-related compounds and should be tested in a first instance. UHPSFC and CE approaches offered some drastic changes in selectivity and should be considered a second choice to reach alternative selectivity as they also allow high throughput separations.


Subject(s)
Chemistry, Pharmaceutical/methods , Chromatography, Liquid/methods , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/isolation & purification , Models, Chemical , Organic Chemicals/chemistry , Stereoisomerism
15.
J Chromatogr A ; 1266: 158-67, 2012 Nov 30.
Article in English | MEDLINE | ID: mdl-23092872

ABSTRACT

Currently, columns packed with sub-2 µm particles are widely employed in liquid chromatography but are scarcely used in supercritical fluid chromatography. The goal of the present study was to compare the performance, possibilities and limitations of both ultra-high performance liquid chromatography (UHPLC) and ultra-high performance supercritical fluid chromatography (UHPSFC) using columns packed with sub-2 µm particles. For this purpose, a kinetic evaluation was first performed, and van Deemter curves and pressure plots were constructed and compared for columns packed with hybrid silica stationary phases composed of 1.7 and 3.5 µm particles. As expected, the kinetic performance of the UHPSFC method was significantly better than that of the UHPLC. Indeed, the h(min) values were in the same range with both strategies and were between 2.2 and 2.8, but u(opt) was increased by a factor of >4 in UHPSFC conditions. Another obvious advantage of UHPSFC over UHPLC is related to the generated backpressure, which is significantly lower in the presence of a supercritical or subcritical fluid. However, the upper pressure limit of the UHPSFC system was only ∼400 bar vs. ∼1000 bar in the UHPLC system, which prevents the use of highly organic mobile phases at high flow rates in UHPSFC. Second, the impact of reducing the particle size (from 3.5 to 1.7 µm) was evaluated in both UHPLC and UHPSFC conditions. The effect of frictional heating on the selectivity was demonstrated in UHPLC and that of fluid density or decompression cooling was highlighted in UHPSFC. However, in both cases, a change in selectivity was observed for only a limited number of compounds. Third, various types of column chemistries packed with 1.7 µm particles were evaluated in both UHPLC and UHPSFC conditions using a model mixture of acidic, neutral and basic compounds. It has been shown that more drastic changes in selectivity were obtained using UHPSFC columns compared to those obtained by changing UHPLC columns. In addition, there was a good complementarity between the two separation modes. Finally, by combining the use of small particles with supercritical fluids as a mobile phase, it was possible to achieve the analysis of pharmaceutical compounds in less than 1 min or to attain a peak capacity of more than 250 in approximately 40 min, both with a high degree of repeatability.


Subject(s)
Chromatography, High Pressure Liquid/methods , Chromatography, Supercritical Fluid/methods , Pharmaceutical Preparations/chemistry , Benzodiazepines/chemistry , Benzodiazepines/isolation & purification , Kinetics , Methanol/chemistry , Models, Chemical , Particle Size , Pharmaceutical Preparations/isolation & purification , Pressure , Psychotropic Drugs/chemistry , Psychotropic Drugs/isolation & purification , Thermodynamics
16.
J Chromatogr A ; 1262: 205-13, 2012 Nov 02.
Article in English | MEDLINE | ID: mdl-22999421

ABSTRACT

While neutral and acidic compounds are well separated by supercritical fluid chromatography (SFC), basic analytes are more challenging to separate and often problems occur with their peak shapes. Two different methods were explored in the present paper to reduce these problems and maintain compatibility with mass spectrometry (MS). Five different, commercially available 2-ethylpyridine (2-EP) stationary phases were tested without a mobile phase additive using 92 pharmaceutical compounds with basic properties. The kinetic performances of the 5 columns were nearly identical, but the peak shapes of the basic drugs were strongly affected by the stationary phase. The PrincetonSFC 2-EP and Zymor Pegasus 2-EP phases clearly outperformed the other stationary phases, with 77% and 69% of the compounds having Gaussian peaks (and asymmetries between 0.8 and 1.4), respectively. Comparatively, the Waters Viridis Silica 2-EP, Waters Viridis BEH 2-EP and ES industries GreenSep 2-EP phases provided only 52%, 44% and 22% of the compounds with Gaussian peaks, respectively. These differences were attributed to the significant dissimilarities in their silica matrix properties. An alternative strategy was also performed with a hybrid silica stationary phase, Viridis BEH, using 20mM ammonium hydroxide in the mobile phase, which was a mixture of CO(2) and MeOH. With these conditions, 81% of the peaks observed for the basic analytes were Gaussian; however, this value dropped to 17% and 10% in the absence of additive and in the presence of 20mM formic acid, respectively. Finally, the use of a hybrid bare silica stationary phase in the presence of 20mM ammonium hydroxide is quite an interesting solution as this system is compatible with both ultra high performance SFC (UHPSFC) columns packed with sub-2 µm particles and with MS detection. The overall applicability of this system was demonstrated with various mixtures of basic drugs.


Subject(s)
Chromatography, Supercritical Fluid/methods , Mass Spectrometry/methods , Models, Chemical , Pharmaceutical Preparations/analysis , Ammonium Hydroxide , Hydrogen-Ion Concentration , Hydroxides/chemistry , Kinetics , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/isolation & purification , Pyridines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...