Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 33(4): e17252, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38146927

ABSTRACT

Circadian regulation is linked to local environmental adaptation, and many species with broad climatic niches display variation in circadian genes. Here, we hypothesize that lichenizing fungi occupying different climate zones tune their metabolism to local environmental conditions with the help of their circadian systems. We study two species of the genus Umbilicaria occupying similar climatic niches (Mediterranean and the cold temperate) in different continents. Using homology to Neurospora crassa genes, we identify gene sets associated with circadian rhythms (11 core, 39 peripheral genes) as well as temperature response (37 genes). Nucleotide diversity of these genes is significantly correlated with mean annual temperature, minimum temperature of the coldest month and mean temperature of the coldest quarter. Furthermore, we identify altitudinal clines in allele frequencies in several non-synonymous substitutions in core clock components, for example, white collar-like, frh-like and various ccg-like genes. A dN/dS approach revealed a few significant peripheral clock- and temperature-associated genes (e.g. ras-1-like, gna-1-like) that may play a role in fine-tuning the circadian clock and temperature-response machinery. An analysis of allele frequency changes demonstrated the strongest evidence for differentiation above the genomic background in the clock-associated genes in U. pustulata. These results highlight the likely relevance of the circadian clock in environmental adaptation, particularly frost tolerance, of lichens. Whether or not the fungal clock modulates the symbiotic interaction within the lichen consortium remains to be investigated. We corroborate the finding of genetic variation in clock components along altitude-not only latitude-as has been reported in other species.


Subject(s)
Circadian Clocks , Neurospora crassa , Circadian Clocks/genetics , Temperature , Circadian Rhythm/genetics , Neurospora crassa/genetics , Genomics , Fungal Proteins/genetics , Fungal Proteins/metabolism
2.
Proc Biol Sci ; 287(1924): 20192311, 2020 04 08.
Article in English | MEDLINE | ID: mdl-32228406

ABSTRACT

Keystone mutualisms, such as corals, lichens or mycorrhizae, sustain fundamental ecosystem functions. Range dynamics of these symbioses are, however, inherently difficult to predict because host species may switch between different symbiont partners in different environments, thereby altering the range of the mutualism as a functional unit. Biogeographic models of mutualisms thus have to consider both the ecological amplitudes of various symbiont partners and the abiotic conditions that trigger symbiont replacement. To address this challenge, we here investigate 'symbiont turnover zones'--defined as demarcated regions where symbiont replacement is most likely to occur, as indicated by overlapping abundances of symbiont ecotypes. Mapping the distribution of algal symbionts from two species of lichen-forming fungi along four independent altitudinal gradients, we detected an abrupt and consistent ß-diversity turnover suggesting parallel niche partitioning. Modelling contrasting environmental response functions obtained from latitudinal distributions of algal ecotypes consistently predicted a confined altitudinal turnover zone. In all gradients this symbiont turnover zone is characterized by approximately 12°C average annual temperature and approximately 5°C mean temperature of the coldest quarter, marking the transition from Mediterranean to cool temperate bioregions. Integrating the conditions of symbiont turnover into biogeographic models of mutualisms is an important step towards a comprehensive understanding of biodiversity dynamics under ongoing environmental change.


Subject(s)
Climate , Ecosystem , Symbiosis
3.
Sci Rep ; 8(1): 17229, 2018 Nov 16.
Article in English | MEDLINE | ID: mdl-30446710

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

4.
MycoKeys ; (36): 1-19, 2018.
Article in English | MEDLINE | ID: mdl-29997448

ABSTRACT

Background: Environment and geographic processes affect species' distributions as well as evolutionary processes, such as clade diversification. Estimating the time of origin and diversification of organisms helps us understand how climate fluctuations in the past might have influenced the diversification and present distribution of species. Complementing divergence dating with character evolution could indicate how key innovations have facilitated the diversification of species. Methods: We estimated the divergence times within the newly recognised subfamily Protoparmelioideae (Ascomycota) using a multilocus dataset to assess the temporal context of diversification events. We reconstructed ancestral habitats and substrate using a species tree generated in *Beast. Results: We found that the diversification in Protoparmelioideae occurred during the Miocene and that the diversification events in the tropical clade Maronina predate those of the extratropical Protoparmelia. Character reconstructions suggest that the ancestor of Protoparmelioideae was most probably a rock-dwelling lichen inhabiting temperate environments. Conclusions: Major diversification within the subtropical/tropical genus Maronina occurred between the Paleocene and Miocene whereas the diversifications within the montane, arctic/temperate genus Protoparmelia occurred much more recently, i.e. in the Miocene.

5.
Sci Rep ; 7(1): 14881, 2017 11 02.
Article in English | MEDLINE | ID: mdl-29097759

ABSTRACT

The metagenome skimming approach, i.e. low coverage shotgun sequencing of multi-species assemblages and subsequent reconstruction of individual genomes, is increasingly used for in-depth genomic characterization of ecological communities. This approach is a promising tool for reconstructing genomes of facultative symbionts, such as lichen-forming fungi, from metagenomic reads. However, no study has so far tested accuracy and completeness of assemblies based on metagenomic sequences compared to assemblies based on pure culture strains of lichenized fungi. Here we assembled the genomes of Evernia prunastri and Pseudevernia furfuracea based on metagenomic sequences derived from whole lichen thalli. We extracted fungal contigs using two different taxonomic binning methods, and performed gene prediction on the fungal contig subsets. We then assessed quality and completeness of the metagenome-based assemblies using genome assemblies as reference which are based on pure culture strains of the two fungal species. Our comparison showed that we were able to reconstruct fungal genomes from uncultured lichen thalli, and also cover most of the gene space (86-90%). Metagenome skimming will facilitate genome mining, comparative (phylo)genomics, and population genetics of lichen-forming fungi by circumventing the time-consuming, sometimes unfeasible, step of aposymbiotic cultivation.


Subject(s)
DNA, Fungal/genetics , Genome, Fungal , Lichens/genetics , Lichens/classification , Metagenomics , Sequence Analysis, DNA , Transcriptome
6.
Sci Rep ; 7: 40879, 2017 01 19.
Article in English | MEDLINE | ID: mdl-28102303

ABSTRACT

The Mediterranean region, comprising the Mediterranean Basin and the Macaronesian Islands, represents a center of diversification for many organisms. The genetic structure and connectivity of mainland and island microbial populations has been poorly explored, in particular in the case of symbiotic fungi. Here we investigated genetic diversity and spatial structure of the obligate outcrossing lichen-forming fungus Parmelina carporrhizans in the Mediterranean region. Using eight microsatellite and mating-type markers we showed that fungal populations are highly diverse but lack spatial structure. This is likely due to high connectivity and long distance dispersal of fungal spores. Consistent with low levels of linkage disequilibrium and lack of clonality, we detected both mating-type idiomorphs in all populations. Furthermore we showed that the Macaronesian Islands are the result of colonization from the Mediterranean Basin. The unidirectional gene flow, though, seemed not to be sufficient to counterbalance the effects of drift, resulting in comparatively allelic poor peripheral populations. Our study is the first to shed light on the high connectivity and lack of population structure in natural populations of a strictly sexual lichen fungus. Our data further support the view of the Macaronesian Islands as the end of the colonization road for this symbiotic ascomycete.


Subject(s)
Genetic Variation , Lichens/microbiology , Parmeliaceae/genetics , Discriminant Analysis , Gene Flow , Islands , Mediterranean Region , Microsatellite Repeats/genetics , Parmeliaceae/physiology , Principal Component Analysis , Spores, Fungal/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...