Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 131
Filter
1.
Membranes (Basel) ; 13(11)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37999368

ABSTRACT

Outer membrane vesicles (OMVs) produced by Gram-negative bacteria have emerged as a novel and flexible vaccine platform. OMVs can be decorated with foreign antigens and carry potent immunostimulatory components. Therefore, after their purification from the culture supernatant, they are ready to be formulated for vaccine use. It has been extensively demonstrated that immunization with engineered OMVs can elicit excellent antibody responses against the heterologous antigens. However, the definition of the conditions necessary to reach the optimal antibody titers still needs to be investigated. Here, we defined the protein concentrations required to induce antigen-specific antibodies, and the amount of antigen and OMVs necessary and sufficient to elicit saturating levels of antigen-specific antibodies. Since not all antigens can be expressed in OMVs, we also investigated the effectiveness of vaccines in which OMVs and purified antigens are mixed together without using any procedure for their physical association. Our data show that in most of the cases OMV-antigen mixtures are very effective in eliciting antigen-specific antibodies. This is probably due to the capacity of OMVs to "absorb" antigens, establishing sufficiently stable interactions that allow antigen-OMV co-presentation to the same antigen presenting cell. In those cases when antigen-OMV interaction is not sufficiently stable, the addition of alum to the formulation guarantees the elicitation of high titers of antigen-specific antibodies.

2.
Vaccines (Basel) ; 11(10)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37896949

ABSTRACT

The vaccination campaign against SARS-CoV-2 relies on the world-wide availability of effective vaccines, with a potential need of 20 billion vaccine doses to fully vaccinate the world population. To reach this goal, the manufacturing and logistic processes should be affordable to all countries, irrespective of economical and climatic conditions. Outer membrane vesicles (OMVs) are bacterial-derived vesicles that can be engineered to incorporate heterologous antigens. Given the inherent adjuvanticity, such modified OMVs can be used as vaccines to induce potent immune responses against the associated proteins. Here, we show that OMVs engineered to incorporate peptides derived from the receptor binding motif (RBM) of the spike protein from SARS-CoV-2 elicit an effective immune response in vaccinated mice, resulting in the production of neutralizing antibodies (nAbs) with a titre higher than 1:300. The immunity induced by the vaccine is sufficient to protect the animals from intranasal challenge with SARS-CoV-2, preventing both virus replication in the lungs and the pathology associated with virus infection. Furthermore, we show that OMVs can be effectively decorated with the RBM of the Omicron BA.1 variant and that such engineered OMVs induce nAbs against Omicron BA.1 and BA.5, as measured using the pseudovirus neutralization infectivity assay. Importantly, we show that the RBM438-509 ancestral-OMVs elicited antibodies which efficiently neutralize in vitro both the homologous ancestral strain, the Omicron BA.1 and BA.5 variants with a neutralization titre ranging from 1:100 to 1:1500, suggesting its potential use as a vaccine targeting diverse SARS-CoV-2 variants. Altogether, given the convenience associated with the ease of engineering, production and distribution, our results demonstrate that OMV-based SARS-CoV-2 vaccines can be a crucial addition to the vaccines currently available.

3.
Vaccines (Basel) ; 11(10)2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37896984

ABSTRACT

Human papillomaviruses (HPVs) are a large family of viruses with a capsid composed of the L1 and L2 proteins, which bind to receptors of the basal epithelial cells and promote virus entry. The majority of sexually active people become exposed to HPV and the virus is the most common cause of cervical cancer. Vaccines are available based on the L1 protein, which self-assembles and forms virus-like particles (VLPs) when expressed in yeast and insect cells. Although very effective, these vaccines are HPV type-restricted and their costs limit broad vaccination campaigns. Recently, vaccine candidates based on the conserved L2 epitope from serotypes 16, 18, 31, 33, 35, 6, 51, and 59 were shown to elicit broadly neutralizing anti-HPV antibodies. In this study, we tested whether E. coli outer membrane vesicles (OMVs) could be successfully decorated with L2 polytopes and whether the engineered OMVs could induce neutralizing antibodies. OMVs represent an attractive vaccine platform owing to their intrinsic adjuvanticity and their low production costs. We show that strings of L2 epitopes could be efficiently expressed on the surface of the OMVs and a polypeptide composed of the L2 epitopes from serotypes 18, 33, 35, and 59 provided a broad cross-protective activity against a large panel of HPV serotypes as determined using pseudovirus neutralization assay. Considering the simplicity of the OMV production process, our work provides a highly effective and inexpensive solution to produce universal anti-HPV vaccines.

4.
Cancers (Basel) ; 15(13)2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37444437

ABSTRACT

In situ vaccination (ISV) is a promising cancer immunotherapy strategy that consists of the intratumoral administration of immunostimulatory molecules (adjuvants). The rationale is that tumor antigens are abundant at the tumor site, and therefore, to elicit an effective anti-tumor immune response, all that is needed is an adjuvant, which can turn the immunosuppressive environment into an immunologically active one. Bacterial outer membrane vesicles (OMVs) are potent adjuvants since they contain several microbe-associated molecular patterns (MAMPs) naturally present in the outer membrane and in the periplasmic space of Gram-negative bacteria. Therefore, they appear particularly indicted for ISV. In this work, we first show that the OMVs from E. coli BL21(DE3)Δ60 strain promote a strong anti-tumor activity when intratumorally injected into the tumors of three different mouse models. Tumor inhibition correlates with a rapid infiltration of DCs and NK cells. We also show that the addition of neo-epitopes to OMVs synergizes with the vesicle adjuvanticity, as judged by a two-tumor mouse model. Overall, our data support the use of the OMVs in ISV and indicate that ISV efficacy can benefit from the addition of properly selected tumor-specific neo-antigens.

5.
Res Sq ; 2023 May 25.
Article in English | MEDLINE | ID: mdl-37292970

ABSTRACT

The vaccination campaign against SARS-CoV-2 relies on the world-wide availability of effective vaccines, with a potential need of 20 billion vaccine doses to fully vaccinate the world population. To reach this goal, the manufacturing and logistic processes should be affordable to all countries, irrespectively of economical and climatic conditions. Outer membrane vesicles (OMV) are bacterial-derived vesicles that can be engineered to incorporate heterologous antigens. Given the inherent adjuvanticity, such modified OMV can be used as vaccine to induce potent immune responses against the associated protein. Here we show that OMVs engineered to incorporate peptides derived from the receptor binding motif (RBM) of the spike protein from SARS-CoV-2 elicit an effective immune response in vaccinated mice, resulting in the production of neutralizing antibodies (nAbs). The immunity induced by the vaccine is sufficient to protect the animals from intranasal challenge with SARS-CoV-2, preventing both virus replication in the lungs and the pathology associated with virus infection. Furthermore, we show that OMVs can be effectively decorated with the RBM of the Omicron BA.1 variant and that such engineered OMVs induced nAbs against Omicron BA.1 and BA.5, as judged by pseudovirus infectivity assay. Importantly, we show that the RBM438-509 ancestral-OMVs elicited antibodies which efficiently neutralized in vitro both the homologous ancestral strain, the Omicron BA.1 and BA.5 variants, suggesting its potential use as a pan SARS-CoV-2 vaccine. Altogether, given the convenience associated with ease of engineering, production and distribution, our results demonstrate that OMV-based SARS-CoV-2 vaccines can be a crucial addition to the vaccines currently available.

6.
Arthritis Rheumatol ; 75(5): 736-747, 2023 05.
Article in English | MEDLINE | ID: mdl-36281741

ABSTRACT

OBJECTIVE: Autoreactive B cells are responsible for antineutrophil cytoplasmic antibody (ANCA) production in ANCA-associated vasculitis (AAV). Rituximab (RTX) depletes circulating B cells, including autoreactive B cells. We aimed to evaluate changes and associations with relapse of the circulating autoreactive B cell pool following therapeutic B cell depletion in AAV. METHODS: Sequential flow cytometry was performed on 148 samples of peripheral blood mononuclear cells from 23 patients with proteinase 3 (PR3)-ANCA-positive AAV who were treated with RTX for remission induction and monitored after stopping therapy during long-term follow-up in a prospective clinical trial. PR3 was used as a ligand to target autoreactive PR3-specific (PR3+) B cells. B cell recurrence was considered as the first blood sample with ≥10 B cells/µl after RTX treatment. RESULTS: At B cell recurrence, PR3+ B cell frequency among B cells was higher than baseline (P < 0.01). Within both PR3+ and total B cells, frequencies of transitional and naive subsets were higher at B cell recurrence than at baseline, while memory subsets were lower (P < 0.001 for all comparisons). At B cell recurrence, frequencies of B cells and subsets did not differ between patients who experienced relapse and patients who remained in remission. In contrast, the plasmablast frequency within the PR3+ B cell pool was higher in patients who experienced relapse and associated with a shorter time to relapse. Frequencies of PR3+ plasmablasts higher than baseline were more likely to be found in patients who experienced relapse within the following 12 months compared to those in sustained remission (P < 0.05). CONCLUSION: The composition of the autoreactive B cell pool varies significantly following RTX treatment in AAV, and early plasmablast enrichment within the autoreactive pool is associated with future relapses.


Subject(s)
Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis , Antibodies, Antineutrophil Cytoplasmic , Humans , Rituximab/therapeutic use , Prospective Studies , Leukocytes, Mononuclear , Myeloblastin , Recurrence
7.
Front Oncol ; 12: 912639, 2022.
Article in English | MEDLINE | ID: mdl-35847919

ABSTRACT

A growing body of evidence supports the notion that the gut microbiome plays an important role in cancer immunity. However, the underpinning mechanisms remain to be fully elucidated. One attractive hypothesis envisages that among the T cells elicited by the plethora of microbiome proteins a few exist that incidentally recognize neo-epitopes arising from cancer mutations ("molecular mimicry (MM)" hypothesis). To support MM, the human probiotic Escherichia coli Nissle was engineered with the SIINFEKL epitope (OVA-E.coli Nissle) and orally administered to C57BL/6 mice. The treatment with OVA-E.coli Nissle, but not with wild type E. coli Nissle, induced OVA-specific CD8+ T cells and inhibited the growth of tumors in mice challenged with B16F10 melanoma cells expressing OVA. The microbiome shotgun sequencing and the sequencing of TCRs from T cells recovered from both lamina propria and tumors provide evidence that the main mechanism of tumor inhibition is mediated by the elicitation at the intestinal site of cross-reacting T cells, which subsequently reach the tumor environment. Importantly, the administration of Outer Membrane Vesicles (OMVs) from engineered E. coli Nissle, as well as from E. coli BL21(DE3)ΔompA, carrying cancer-specific T cell epitopes also elicited epitope-specific T cells in the intestine and inhibited tumor growth. Overall, our data strengthen the important role of MM in tumor immunity and assign a novel function of OMVs in host-pathogen interaction. Moreover, our results pave the way to the exploitation of probiotics and OMVs engineered with tumor specific-antigens as personalized mucosal cancer vaccines.

8.
Joint Bone Spine ; 89(4): 105403, 2022 07.
Article in English | MEDLINE | ID: mdl-35508288

ABSTRACT

OBJECTIVES: We aimed to analyze rheumatic immune-related (ir) and nonimmune-related adverse events (AEs) due to immune-checkpoint inhibitors (ICIs) targeting programmed cell death-1 or its ligand PD-(L)1 in lung cancer patients from the available literature. METHODS: We performed a systematic review and meta-analysis of phase III randomized clinical trials (RCTs) assessing PD-(L)1-ICIs in lung cancer patients, from inception until January 12th, 2021. We extracted data of each trial to estimate odds ratio (OR) for rheumatic ir or non-irAE as classified in RCTs safety data. Sensitivity analyses (by ICI, treatment group and histology) were performed. RESULTS: Eighteen RCTs met the inclusion criteria (n=12172 subjects). The OR [95%IC] for rheumatic irAE in ICIs versus controls (either placebo or chemotherapy) was 2.20 [0.85,5.72]. Among rheumatic non-irAEs, both overall and severe (grade≥3) back pain were significantly more frequent in ICIs versus controls, 2.01 [1.09;3.73] and 2.90 [1.18;7.08], respectively. The overall frequency of arthralgia was similar between ICIs and controls; by sensitivity analysis RCTs assessing ICIs in combination with chemotherapy showed a significant association with arthralgia (1.55 [1.15;2.10]). Similarly, the frequency of myalgia was significantly lower in RCTs assessing ICIs alone versus chemotherapy (OR 0.32 [0.24;0.42]). Muscular pain was not significantly increased with ICI. CONCLUSION: Rheumatic irAEs are not increased in RCTs assessing PD-(L)1 inhibitors, not reflecting the real-life incidence, therefore likely underreported or misclassified. Back pain is significantly associated with them regardless its severity, while arthralgia only when ICIs are added on conventional chemotherapy.


Subject(s)
Antineoplastic Agents, Immunological , Lung Neoplasms , Antineoplastic Agents, Immunological/adverse effects , Arthralgia/chemically induced , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology
9.
Front Immunol ; 12: 752168, 2021.
Article in English | MEDLINE | ID: mdl-34819933

ABSTRACT

Modification of surface antigens and differential expression of virulence factors are frequent strategies pathogens adopt to escape the host immune system. These escape mechanisms make pathogens a "moving target" for our immune system and represent a challenge for the development of vaccines, which require more than one antigen to be efficacious. Therefore, the availability of strategies, which simplify vaccine design, is highly desirable. Bacterial Outer Membrane Vesicles (OMVs) are a promising vaccine platform for their built-in adjuvanticity, ease of purification and flexibility to be engineered with foreign proteins. However, data on if and how OMVs can be engineered with multiple antigens is limited. In this work, we report a multi-antigen expression strategy based on the co-expression of two chimeras, each constituted by head-to-tail fusions of immunogenic proteins, in the same OMV-producing strain. We tested the strategy to develop a vaccine against Staphylococcus aureus, a Gram-positive human pathogen responsible for a large number of community and hospital-acquired diseases. Here we describe an OMV-based vaccine in which four S. aureus virulent factors, ClfAY338A, LukE, SpAKKAA and HlaH35L have been co-expressed in the same OMVs (CLSH-OMVsΔ60). The vaccine elicited antigen-specific antibodies with functional activity, as judged by their capacity to promote opsonophagocytosis and to inhibit Hla-mediated hemolysis, LukED-mediated leukocyte killing, and ClfA-mediated S. aureus binding to fibrinogen. Mice vaccinated with CLSH-OMVsΔ60 were robustly protected from S. aureus challenge in the skin, sepsis and kidney abscess models. This study not only describes a generalized approach to develop easy-to-produce and inexpensive multi-component vaccines, but also proposes a new tetravalent vaccine candidate ready to move to development.


Subject(s)
Antigens, Bacterial/immunology , Bacterial Outer Membrane , Bacterial Proteins/immunology , Bacterial Vaccines/administration & dosage , Staphylococcus aureus/immunology , Vaccines, Combined/administration & dosage , Virulence Factors/immunology , Animals , Antibodies, Bacterial/blood , Female , HL-60 Cells , Humans , Mice , Staphylococcal Infections/prevention & control
10.
Vaccines (Basel) ; 9(11)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34835287

ABSTRACT

A large body of data both in animals and humans demonstrates that the gut microbiome plays a fundamental role in cancer immunity and in determining the efficacy of cancer immunotherapy. In this work, we have investigated whether and to what extent the gut microbiome can influence the antitumor activity of neo-epitope-based cancer vaccines in a BALB/c-CT26 cancer mouse model. Similarly to that observed in the C57BL/6-B16 model, Bifidobacterium administration per se has a beneficial effect on CT26 tumor inhibition. Furthermore, the combination of Bifidobacterium administration and vaccination resulted in a protection which was superior to vaccination alone and to Bifidobacterium administration alone, and correlated with an increase in the frequency of vaccine-specific T cells. The gut microbiome analysis by 16S rRNA gene sequencing and shotgun metagenomics showed that tumor challenge rapidly altered the microbiome population, with Muribaculaceae being enriched and Lachnospiraceae being reduced. Over time, the population of Muribaculaceae progressively reduced while the Lachnospiraceae population increased-a trend that appeared to be retarded by the oral administration of Bifidobacterium. Interestingly, in some Bacteroidales, Prevotella and Muribaculacee species we identified sequences highly homologous to immunogenic neo-epitopes of CT26 cells, supporting the possible role of "molecular mimicry" in anticancer immunity. Our data strengthen the importance of the microbiome in cancer immunity and suggests a microbiome-based strategy to potentiate neo-epitope-based cancer vaccines.

11.
JCI Insight ; 6(22)2021 11 22.
Article in English | MEDLINE | ID: mdl-34618687

ABSTRACT

BACKGROUNDLittle is known about the autoreactive B cells in antineutrophil cytoplasmic antibody-associated (ANCA-associated) vasculitis (AAV). We aimed to investigate tolerance checkpoints of circulating antigen-specific proteinase 3-reactive (PR3+) B cells.METHODSMulticolor flow cytometry in combination with bioinformatics and functional in vitro studies were performed on baseline samples of PBMCs from 154 well-characterized participants of the RAVE trial (NCT00104299) with severely active PR3-AAV and myeloperoxidase-AAV (MPO-AAV) and 27 healthy controls (HCs). Clinical data and outcomes from the trial were correlated with PR3+ B cells (total and subsets).RESULTSThe frequency of PR3+ B cells among circulating B cells was higher in participants with PR3-AAV (4.77% median [IQR, 3.98%-6.01%]) than in participants with MPO-AAV (3.16% median [IQR, 2.51%-5.22%]) and participants with AAV compared with HCs (1.67% median [IQR, 1.27%-2.16%], P < 0.001 for all comparisons), implying a defective central tolerance checkpoint in patients with AAV. Only PBMCs from participants with PR3-AAV contained PR3+ B cells capable of secreting PR3-ANCA IgG in vitro, proving they were functionally distinct from those of participants with MPO-AAV and HCs. Unsupervised clustering identified subtle subsets of atypical autoreactive PR3+ memory B cells accumulating through the maturation process in patients with PR3-AAV. PR3+ B cells were enriched in the memory B cell compartment of participants with PR3-AAV and were associated with higher serum CXCL13 levels, suggesting an increased germinal center activity. PR3+ B cells correlated with systemic inflammation (C-reactive protein and erythrocyte sedimentation rate, P < 0.05) and complete remission (P < 0.001).CONCLUSIONThis study suggests the presence of defective central antigen-independent and peripheral antigen-dependent checkpoints in patients with PR3-AAV, elucidating the selection process of autoreactive B cells.Trial registrationClinicalTrials.gov NCT00104299.FundingThe Vasculitis Foundation, the National Institute of Allergy and Infectious Diseases of the NIH, and the Mayo Foundation for Education and Research.


Subject(s)
Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/metabolism , Flow Cytometry/methods , Memory B Cells/metabolism , Peptide Hydrolases/metabolism , Double-Blind Method , Female , Humans , Male
12.
Crit Rev Oncol Hematol ; 162: 103351, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33989769

ABSTRACT

INTRODUCTION: The introduction in clinical practice of the immune checkpoint inhibitors (ICIs) radically changed the treatment algorithm of lung cancers. To characterize the toxicity of ICIs (atezolizumab, durvalumab, nivolumab, pembrolizumab) is important for personalizing treatment. PATIENTS AND METHODS: We performed a systematic review and meta-analysis of phase III randomized controlled trials assessing ICIs, from inception until April 23rd, 2020. We extracted the data from the ICI arm of each trial for indirect comparisons to estimate relative risk for immune-related adverse events (irAEs), severe (grade ≥3) irAEs, drug discontinuation due to irAEs or toxic death. RESULTS: Sixteen trials included a total of 6226 subjects randomized to the experimental immunotherapy arm. Immunotherapy was administered in monotherapy (8 trials), in combination with chemotherapy (6 trials) or other ICI (2 trials). Any grade irAEs and severe irAEs for ICI were 37.1% and 18.5%, respectively. Discontinuations due to any grade irAEs and severe irAEs were 13.8% and 9.2%, respectively; toxic deaths were 2.9% in the immunotherapy arm. Pooled data on any, severe and organ-specific irAEs showed that immunotherapy has a significantly lower risk of irAEs compared to immuno-chemotherapy, especially when analysis was restricted to monoimmunotherapy, like drug discontinuation and toxic death (all p < 0.05). Detailed comparisons between different ICIs provided treatment-related risk profiles for organ-specific irAEs. CONCLUSIONS: Our findings contribute to clarifying frequency and features of immune-related toxicities between different ICIs in lung cancer patients, including any grade irAEs, severe irAEs, drug discontinuation and toxic deaths, and may be useful to inform the selection of treatment.


Subject(s)
Immune Checkpoint Inhibitors , Lung Neoplasms , Humans , Immunotherapy/adverse effects , Lung Neoplasms/drug therapy , Nivolumab/adverse effects
13.
J Extracell Vesicles ; 10(4): e12066, 2021 02.
Article in English | MEDLINE | ID: mdl-33643549

ABSTRACT

Because of their potent adjuvanticity, ease of manipulation and simplicity of production Gram-negative Outer Membrane Vesicles OMVs have the potential to become a highly effective vaccine platform. However, some optimization is required, including the reduction of the number of endogenous proteins, the increase of the loading capacity with respect to heterologous antigens, the enhancement of productivity in terms of number of vesicles per culture volume. In this work we describe the use of Synthetic Biology to create Escherichia coli BL21(DE3)Δ60, a strain releasing OMVs (OMVsΔ60) deprived of 59 endogenous proteins. The strain produces large quantities of vesicles (> 40 mg/L under laboratory conditions), which can accommodate recombinant proteins to a level ranging from 5% to 30% of total OMV proteins. Moreover, also thanks to the absence of immune responses toward the inactivated endogenous proteins, OMVsΔ60 decorated with heterologous antigens/epitopes elicit elevated antigens/epitopes-specific antibody titers and high frequencies of epitope-specific IFN-γ-producing CD8+ T cells. Altogether, we believe that E. coli BL21(DE3)Δ60 have the potential to become a workhorse factory for novel OMV-based vaccines.


Subject(s)
Bacterial Outer Membrane/immunology , Bacterial Outer Membrane/metabolism , Bacterial Vaccines , Escherichia coli/immunology , Escherichia coli/metabolism , Extracellular Vesicles/immunology , Extracellular Vesicles/metabolism , Animals , Antigens, Bacterial/immunology , Antigens, Bacterial/metabolism , Bacterial Outer Membrane Proteins/metabolism , Biological Transport , CD8-Positive T-Lymphocytes/immunology , Escherichia coli Infections/immunology , Escherichia coli Infections/microbiology , Humans , Interleukin-6/metabolism , Mice , Proteome/metabolism , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Synthetic Biology/methods , Toll-Like Receptor 2/metabolism , Vaccine Development/methods
14.
Comput Struct Biotechnol J ; 18: 650-660, 2020.
Article in English | MEDLINE | ID: mdl-32257048

ABSTRACT

Over 18 million disease cases and half a million deaths worldwide are estimated to be caused annually by Group A Streptococcus. A vaccine to prevent GAS disease is urgently needed. SpyCEP (Streptococcus pyogenes Cell-Envelope Proteinase) is a surface-exposed serine protease that inactivates chemokines, impairing neutrophil recruitment and bacterial clearance, and has shown promising immunogenicity in preclinical models. Although SpyCEP structure has been partially characterized, a more complete and higher resolution understanding of its antigenic features would be desirable prior to large scale manufacturing. To address these gaps and facilitate development of this globally important vaccine, we performed immunogenicity studies with a safety-engineered SpyCEP mutant, and comprehensively characterized its structure by combining X-ray crystallography, NMR spectroscopy and molecular dynamics simulations. We found that the catalytically-inactive SpyCEP antigen conferred protection similar to wild-type SpyCEP in a mouse infection model. Further, a new higher-resolution crystal structure of the inactive SpyCEP mutant provided new insights into this large chemokine protease comprising nine domains derived from two non-covalently linked fragments. NMR spectroscopy and molecular simulation analyses revealed conformational flexibility that is likely important for optimal substrate recognition and overall function. These combined immunogenicity and structural data demonstrate that the full-length SpyCEP inactive mutant is a strong candidate human vaccine antigen. These findings show how a multi-disciplinary study was used to overcome obstacles in the development of a GAS vaccine, an approach applicable to other future vaccine programs. Moreover, the information provided may also facilitate the structure-based discovery of small-molecule therapeutics targeting SpyCEP protease inhibition.

15.
Proc Natl Acad Sci U S A ; 116(43): 21780-21788, 2019 10 22.
Article in English | MEDLINE | ID: mdl-31591215

ABSTRACT

Bacterial outer membrane vesicles (OMVs) represent an interesting vaccine platform for their built-in adjuvanticity and simplicity of production process. Moreover, OMVs can be decorated with foreign antigens using different synthetic biology approaches. However, the optimal OMV engineering strategy, which should guarantee the OMV compartmentalization of most heterologous antigens in quantities high enough to elicit protective immune responses, remains to be validated. In this work we exploited the lipoprotein transport pathway to engineer OMVs with foreign proteins. Using 5 Staphylococcus aureus protective antigens expressed in Escherichia coli as fusions to a lipoprotein leader sequence, we demonstrated that all 5 antigens accumulated in the vesicular compartment at a concentration ranging from 5 to 20% of total OMV proteins, suggesting that antigen lipidation could be a universal approach for OMV manipulation. Engineered OMVs elicited high, saturating antigen-specific antibody titers when administered to mice in quantities as low as 0.2 µg/dose. Moreover, the expression of lipidated antigens in E. coli BL21(DE3)ΔompAΔmsbBΔpagP was shown to affect the lipopolysaccharide structure, with the result that the TLR4 agonist activity of OMVs was markedly reduced. These results, together with the potent protective activity of engineered OMVs observed in mice challenged with S. aureus Newman strain, makes the 5-combo-OMVs a promising vaccine candidate to be tested in clinics.


Subject(s)
Antigens, Bacterial/immunology , Bacterial Vaccines/immunology , Extracellular Vesicles/immunology , Staphylococcal Infections/prevention & control , Staphylococcus aureus/immunology , Animals , Bacterial Outer Membrane/immunology , Bacterial Outer Membrane/metabolism , Bacterial Outer Membrane Proteins/immunology , Bacterial Outer Membrane Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Female , Lipopolysaccharides/immunology , Mice , Staphylococcal Infections/immunology , Staphylococcal Infections/microbiology
16.
Genome Med ; 10(1): 82, 2018 11 13.
Article in English | MEDLINE | ID: mdl-30424799

ABSTRACT

BACKGROUND: Staphylococcus aureus is an opportunistic pathogen and a leading cause of nosocomial infections. It can acquire resistance to all the antibiotics that entered the clinics to date, and the World Health Organization defined it as a high-priority pathogen for research and development of new antibiotics. A deeper understanding of the genetic variability of S. aureus in clinical settings would lead to a better comprehension of its pathogenic potential and improved strategies to contrast its virulence and resistance. However, the number of comprehensive studies addressing clinical cohorts of S. aureus infections by simultaneously looking at the epidemiology, phylogenetic reconstruction, genomic characterisation, and transmission pathways of infective clones is currently low, thus limiting global surveillance and epidemiological monitoring. METHODS: We applied whole-genome shotgun sequencing (WGS) to 184 S. aureus isolates from 135 patients treated in different operative units of an Italian paediatric hospital over a timespan of 3 years, including both methicillin-resistant S. aureus (MRSA) and methicillin-sensitive S. aureus (MSSA) from different infection types. We typed known and unknown clones from their genomes by multilocus sequence typing (MLST), Staphylococcal Cassette Chromosome mec (SCCmec), Staphylococcal protein A gene (spa), and Panton-Valentine Leukocidin (PVL), and we inferred their whole-genome phylogeny. We explored the prevalence of virulence and antibiotic resistance genes in our cohort, and the conservation of genes encoding vaccine candidates. We also performed a timed phylogenetic investigation for a potential outbreak of a newly emerging nosocomial clone. RESULTS: The phylogeny of the 135 single-patient S. aureus isolates showed a high level of diversity, including 80 different lineages, and co-presence of local, global, livestock-associated, and hypervirulent clones. Five of these clones do not have representative genomes in public databases. Variability in the epidemiology is mirrored by variability in the SCCmec cassettes, with some novel variants of the type IV cassette carrying extra antibiotic resistances. Virulence and resistance genes were unevenly distributed across different clones and infection types, with highly resistant and lowly virulent clones showing strong association with chronic diseases, and highly virulent strains only reported in acute infections. Antigens included in vaccine formulations undergoing clinical trials were conserved at different levels in our cohort, with only a few highly prevalent genes fully conserved, potentially explaining the difficulty of developing a vaccine against S. aureus. We also found a recently diverged ST1-SCCmecIV-t127 PVL- clone suspected to be hospital-specific, but time-resolved integrative phylogenetic analysis refuted this hypothesis and suggested that this quickly emerging lineage was acquired independently by patients. CONCLUSIONS: Whole genome sequencing allowed us to study the epidemiology and genomic repertoire of S. aureus in a clinical setting and provided evidence of its often underestimated complexity. Some virulence factors and clones are specific of disease types, but the variability and dispensability of many antigens considered for vaccine development together with the quickly changing epidemiology of S. aureus makes it very challenging to develop full-coverage therapies and vaccines. Expanding WGS-based surveillance of S. aureus to many more hospitals would allow the identification of specific strains representing the main burden of infection and therefore reassessing the efforts for the discovery of new treatments and clinical practices.


Subject(s)
Genome, Bacterial , Hospitals, Pediatric , Phylogeny , Staphylococcal Infections/epidemiology , Staphylococcal Infections/genetics , Staphylococcus aureus/classification , Staphylococcus aureus/genetics , Acute Disease , Base Sequence , Bayes Theorem , Child , Chronic Disease , Conserved Sequence , Drug Resistance, Bacterial/genetics , Genes, Bacterial , Humans , Italy/epidemiology , Likelihood Functions , Staphylococcal Vaccines/immunology , Staphylococcus aureus/pathogenicity , Virulence Factors/metabolism
17.
Front Oncol ; 8: 481, 2018.
Article in English | MEDLINE | ID: mdl-30416985

ABSTRACT

Human FAT1 is overexpressed on the surface of most colorectal cancers (CRCs) and in particular a 25 amino acid sequence (D8) present in one of the 34 cadherin extracellular repeats carries the epitope recognized by mAb198.3, a monoclonal antibody which partially protects mice from the challenge with human CRC cell lines in xenograft mouse models. Here we present data in immune competent mice demonstrating the potential of the D8-FAT1 epitope as CRC cancer vaccine. We first demonstrated that the mouse homolog of D8-FAT1 (mD8-FAT1) is also expressed on the surface of CT26 and B16F10 murine cell lines. We then engineered bacterial outer membranes vesicles (OMVs) with mD8-FAT1 and we showed that immunization of BALB/c and C57bl6 mice with engineered OMVs elicited anti-mD8-FAT1 antibodies and partially protected mice from the challenge against CT26 and EGFRvIII-B16F10 cell lines, respectively. We also show that when combined with OMVs decorated with the EGFRvIII B cell epitope or with OMVs carrying five tumor-specific CD4+ T cells neoepitopes, mD8-FAT1 OMVs conferred robust protection against tumor challenge in C57bl6 and BALB/c mice, respectively. Considering that FAT1 is overexpressed in both KRAS+ and KRAS- CRCs, these data support the development of anti-CRC cancer vaccines in which the D8-FAT1 epitope is used in combination with other CRC-specific antigens, including mutation-derived neoepitopes.

18.
Sci Rep ; 8(1): 2593, 2018 02 07.
Article in English | MEDLINE | ID: mdl-29416049

ABSTRACT

Group B Streptococcus (GBS) is a normal inhabitant of recto-vaginal mucosae in up to 30% of healthy women. Colonization is a major risk factor for perinatal infection which can lead to severe complications such as stillbirth and neonatal invasive disease. Intra-partum antibiotic prophylaxis in colonized women is a safe and cost-effective preventive measure against early-onset disease in the first days of life, but has no effect on late-onset manifestations or on early maternal infection. Maternal immunization with capsular polysaccharide-based vaccines shows promise for the prevention of both early-onset and late-onset neonatal infections, although ability to prevent maternal colonization and ascending infection has been less studied. Here we investigated the effect of a GBS glycoconjugate vaccine since the very early stage of maternal GBS acquisition to neonatal outcome by rodent models of vaginal colonization and ascending infection. Immunization of female mice and rats with a type III glycoconjugate reduced vaginal colonization, infection of chorioamniotic/ placental membranes and bacterial transmission to fetuses and pups. Type III specific antibodies were detected in the blood and vagina of vaccinated mothers and their offspring. The obtained data support a potential preventive effect of GBS glycoconjugate vaccines during the different stages of pregnancy.


Subject(s)
Infectious Disease Transmission, Vertical/prevention & control , Polysaccharides, Bacterial/immunology , Streptococcal Infections/prevention & control , Streptococcal Vaccines/immunology , Vagina/microbiology , Animals , Disease Models, Animal , Female , Mice , Polysaccharides, Bacterial/administration & dosage , Rats , Streptococcal Infections/microbiology , Streptococcal Vaccines/administration & dosage , Vaccination
19.
J Infect ; 76(5): 449-456, 2018 05.
Article in English | MEDLINE | ID: mdl-29374589

ABSTRACT

OBJECTIVES: The main aim of this exploratory study was to evaluate functional activity of antibodies elicited by a maternal Group B Streptococcus (GBS) investigational vaccine composed of capsular polysaccharides Ia, Ib, and III conjugated to genetically detoxified Diphtheria toxin CRM197. The second objective was to investigate the relationship between serotype-specific IgG concentrations and functional activity in maternal and cord sera. METHODS: Maternal and cord sera collected at baseline and at delivery from vaccine and placebo recipients during a double-blind placebo-controlled Phase II study (www.clinicaltrials.gov, NCT01446289) were tested in an opsono-phagocytic bacterial killing assay. Cord sera from vaccine recipients were also passively transferred to newborn mice to investigate conferred protection against bacterial challenge. RESULTS: Antibody-mediated GBS phagocytic killing was significantly increased in maternal serum at delivery and in cord sera from the investigational vaccine group as compared to the placebo group. Anti-capsular IgG concentrations above 1 µg/mL mediated in vitro killing against GBS strains belonging to all three serotypes and IgG levels correlated with functional titers. Passively administered cord sera elicited a dose-dependent protective response against all GBS serotypes in the in vivo model. CONCLUSIONS: The maternal vaccine elicited functional antibodies that were placentally transferred. Anti-capsular IgG concentrations in maternal and cord sera were predictive of functional activity and in vivo protection in the mouse model.


Subject(s)
Antibodies, Bacterial/blood , Fetal Blood/immunology , Glycoconjugates/immunology , Immunization, Passive , Streptococcal Vaccines/immunology , Adolescent , Adult , Animals , Animals, Newborn , Double-Blind Method , Female , Humans , Immunity, Maternally-Acquired , Immunoglobulin G/analysis , Immunoglobulin G/blood , Mice , Pregnancy , Serogroup , Streptococcal Infections/prevention & control , Streptococcal Vaccines/administration & dosage , Streptococcus agalactiae , Vaccines, Conjugate/administration & dosage , Young Adult
20.
Bio Protoc ; 8(2): e2688, 2018 Jan 20.
Article in English | MEDLINE | ID: mdl-34179238

ABSTRACT

With the recent implementation of the CRISPR/Cas9 technology as a standard tool for genome editing, laboratories all over the world are undergoing one of the biggest advancements in molecular biology since PCR. The key advantage of this method is its simplicity and universal applicability for species of any phylum. Of particular interest is the extensively studied Gram-negative bacterium Escherichia coli, as it is considered as the workhorse for both research and industrial purposes. Here, we present a simple, robust and effective protocol using the CRISPR/Cas9 system in combination with the λ Red machinery for gene knockout in E. coli. Crucial in our procedure is the use of a double-stranded donor DNA and a curing strategy for removal of the guide RNA encoding plasmid that allows starting a new mutation after only two working days. Our protocol allows multiple, stepwise gene knockout strains with high mutagenesis efficiencies applicable for high-throughput approaches.

SELECTION OF CITATIONS
SEARCH DETAIL
...