Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
1.
Thorax ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38697843

ABSTRACT

RATIONALE: Lung function in early adulthood is associated with subsequent adverse health outcomes. OBJECTIVES: To ascertain whether stable and reproducible lung function trajectories can be derived in different populations and investigate their association with objective measures of cardiovascular structure and function. METHODS: Using latent profile modelling, we studied three population-based birth cohorts with repeat spirometry data from childhood into early adulthood to identify trajectories of forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC). We used multinomial logistic regression models to investigate early-life predictors of the derived trajectories. We then ascertained the extent of the association between the derived FEV1/FVC trajectories and blood pressure and echocardiographic markers of increased cardiovascular risk and stroke in ~3200 participants at age 24 years in one of our cohorts. RESULTS: We identified four FEV1/FVC trajectories with strikingly similar latent profiles across cohorts (pooled N=6377): above average (49.5%); average (38.3%); below average (10.6%); and persistently low (1.7%). Male sex, wheeze, asthma diagnosis/medication and allergic sensitisation were associated with trajectories with diminished lung function in all cohorts. We found evidence of an increase in cardiovascular risk markers ascertained by echocardiography (including left ventricular mass indexed to height and carotid intima-media thickness) with decreasing FEV1/FVC (with p values for the mean crude effects per-trajectory ranging from 0.10 to p<0.001). In this analysis, we considered trajectories as a pseudo-continuous variable; we confirmed the assumption of linearity in all the regression models. CONCLUSIONS: Childhood lung function trajectories may serve as predictors in the development of not only future lung disease, but also the cardiovascular disease and multimorbidity in adulthood.

3.
EClinicalMedicine ; 67: 102355, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38169936

ABSTRACT

Background: Spirometric obstruction and restriction are two patterns of impaired lung function which are predictive of poor health. We investigated the development of these phenotypes and their transitions through childhood to early adulthood. Methods: In this study, we analysed pooled data from three UK population-based birth cohorts established between 1989 and 1995. We applied descriptive statistics, regression modelling and data-driven modelling to data from three population-based birth cohorts with at least three spirometry measures from childhood to adulthood (mid-school: 8-10 years, n = 8404; adolescence: 15-18, n = 5764; and early adulthood: 20-26, n = 4680). Participants were assigned to normal, restrictive, and obstructive spirometry based on adjusted regression residuals. We considered two transitions: from 8-10 to 15-18 and from 15-18 to 20-26 years. Findings: Obstructive phenotype was observed in ∼10%, and restrictive in ∼9%. A substantial proportion of children with impaired lung function in school age (between one third in obstructive and a half in restricted phenotype) improved and achieved normal and stable lung function to early adulthood. Of those with normal lung function in school-age, <5% declined to adulthood. Underweight restrictive and obese obstructive participants were less likely to transit to normal. Maternal smoking during pregnancy and current asthma diagnosis increased the risk of persistent obstruction and worsening. Significant associate of worsening in restrictive phenotypes was lower BMI at the first lung function assessment. Data-driven methodologies identified similar risk factors for obstructive and restrictive clusters. Interpretation: The worsening and improvement in obstructive and restrictive spirometry were observed at all ages. Maintaining optimal weight during childhood and reducing maternal smoking during pregnancy may reduce spirometry obstruction and restriction and improve lung function. Funding: MRC Grant MR/S025340/1.

4.
Eur Respir J ; 63(1)2024 01.
Article in English | MEDLINE | ID: mdl-38097206

ABSTRACT

BACKGROUND: Preserved ratio impaired spirometry (PRISm) is defined as a forced expiratory volume in 1 s (FEV1) <80% predicted and FEV1/forced vital capacity ≥0.70. PRISm is associated with respiratory symptoms and comorbidities. Our objective was to discover novel genetic signals for PRISm and see if they provide insight into the pathogenesis of PRISm and associated comorbidities. METHODS: We undertook a genome-wide association study (GWAS) of PRISm in UK Biobank participants (Stage 1), and selected single nucleotide polymorphisms (SNPs) reaching genome-wide significance for replication in 13 cohorts (Stage 2). A combined meta-analysis of Stage 1 and Stage 2 was done to determine top SNPs. We used cross-trait linkage disequilibrium score regression to estimate genome-wide genetic correlation between PRISm and pulmonary and extrapulmonary traits. Phenome-wide association studies of top SNPs were performed. RESULTS: 22 signals reached significance in the joint meta-analysis, including four signals novel for lung function. A strong genome-wide genetic correlation (rg) between PRISm and spirometric COPD (rg=0.62, p<0.001) was observed, and genetic correlation with type 2 diabetes (rg=0.12, p=0.007). Phenome-wide association studies showed that 18 of 22 signals were associated with diabetic traits and seven with blood pressure traits. CONCLUSION: This is the first GWAS to successfully identify SNPs associated with PRISm. Four of the signals, rs7652391 (nearest gene MECOM), rs9431040 (HLX), rs62018863 (TMEM114) and rs185937162 (HLA-B), have not been described in association with lung function before, demonstrating the utility of using different lung function phenotypes in GWAS. Genetic factors associated with PRISm are strongly correlated with risk of both other lung diseases and extrapulmonary comorbidity.


Subject(s)
Diabetes Mellitus, Type 2 , Pulmonary Disease, Chronic Obstructive , Humans , Genome-Wide Association Study , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/genetics , Diabetes Mellitus, Type 2/genetics , Lung , Forced Expiratory Volume/genetics , Spirometry , Vital Capacity
5.
Br J Dermatol ; 190(1): 45-54, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37935633

ABSTRACT

BACKGROUND: Longitudinal modelling of the presence/absence of current eczema through childhood has identified similar phenotypes, but their characteristics often differ between studies. OBJECTIVES: To demonstrate that a more comprehensive description of longitudinal pattern of symptoms may better describe trajectories than binary information on eczema presence. METHODS: We derived six multidimensional variables of eczema spells from birth to 18 years of age (including duration, temporal sequencing and the extent of persistence/recurrence). Spells were defined as consecutive observations of eczema separated by no eczema across 5 epochs in five birth cohorts: infancy (first year); early childhood (age 2-3 years); preschool/early school age (4-5 years); middle childhood (8-10 years); adolescence (14-18 years). We applied Partitioning Around Medoids clustering on these variables to derive clusters of the temporal patterns of eczema. We then investigated the stability of the clusters, within-cluster homogeneity and associated risk factors, including FLG mutations. RESULTS: Analysis of 7464 participants with complete data identified five clusters: (i) no eczema (51.0%); (ii) early transient eczema (21.6%); (iii) late-onset eczema (LOE; 8.1%); (iv) intermittent eczema (INT; 7.5%); and (v) persistent eczema (PE; 11.8%). There was very-high agreement between the assignment of individual children into clusters when using complete or imputed (n = 15 848) data (adjusted Rand index = 0.99; i.e. the clusters were very stable). Within-individual symptom patterns across clusters confirmed within-cluster homogeneity, with consistent patterns of symptoms among participants within each cluster and no overlap between the clusters. Clusters were characterized by differences in associations with risk factors (e.g. parental eczema was associated with all clusters apart from LOE; sensitization to inhalant allergens was associated with all clusters, with the highest risk in the PE cluster). All clusters apart from LOE were associated with FLG mutations. Of note, the strongest association was for PE [relative risk ratio (RRR) 2.70, 95% confidence interval (CI) 2.24-3.26; P < 0.001] followed by INT (RRR 2.29, 95% CI 1.82-2.88; P < 0.001). CONCLUSIONS: Clustering of multidimensional variables identified stable clusters with different genetic architectures. Using multidimensional variables may capture eczema development and derive stable and internally homogeneous clusters. However, deriving homogeneous symptom clusters does not necessarily mean that these are underpinned by completely unique mechanisms.


Subject(s)
Eczema , Hypersensitivity, Immediate , Adolescent , Child , Child, Preschool , Humans , Birth Cohort , Eczema/epidemiology , Eczema/genetics , Eczema/complications , Filaggrin Proteins , Intermediate Filament Proteins/genetics , Risk Factors , Infant
6.
Front Toxicol ; 5: 1253442, 2023.
Article in English | MEDLINE | ID: mdl-37808180

ABSTRACT

Introduction: Within human epidemiological studies, associations have been demonstrated between grandparental exposures during childhood and grandchildren's outcomes. A few studies have assessed whether asthma has ancestral associations with exposure to cigarette smoking, but results have been mixed so far. Material and methods: In this study we used four generations: (F0 great-grandparents, F1 grandparents, F2 parents, F3 study children) of the Avon Longitudinal Study of Parents and Children (ALSPAC) to determine whether there is evidence of associations between asthma in generations F2 or F3 and exposures to severe trauma in childhood and/or active cigarette smoking during the adolescence of grandmothers and grandfathers in generations F0 and F1 respectively, or of a history of a F0 or F1 grandmother smoking during pregnancy. Results: We have shown that: a) stress exemplified by the death of a F1 grandparent's parent during the grandparents' childhood was associated with increased risk of asthma in generation F3, especially if the grandparent involved was the paternal grandmother; b) if the grandparents of generations F0 or F1 smoked during adolescence (i.e. < 17 years), their grandchildren in generations F2 and F3 were more likely to have a history of asthma; c) paternal F1 grandmother's smoking in pregnancy was associated with her F3 grandchild's asthma at age 7; d) There were differences between the results for the grandsons and granddaughters of the paternal grandmother with exposure to smoking in adolescence and with smoking in pregnancy. e) The addition of all of the individual exposure variables to the different analyses often provided a considerable increase in goodness of fit compared with only adding demographic factors associated with asthma at P < 0.10 such as social class; this was particularly true when all four exposure variables were combined in one model, suggesting possible synergistic effects between them. Discussion: We have shown associations between all four types of exposure to the grandparents to be associated with asthma in the grandchildren, such that the results both depended on whether the male or female line was involved, and the sex of the grandchildren. It was notable that the paternal grandmother was particularly involved in many of the associations. We emphasize that these are exploratory analyses, that asthma diagnostic criteria likely changed over time and may not be consistent between generations, and that the results should be tested in other cohorts.

7.
Allergy ; 78(11): 2969-2979, 2023 11.
Article in English | MEDLINE | ID: mdl-37661293

ABSTRACT

BACKGROUND: Numerous risk scores have been developed to predict childhood asthma. However, they may not predict asthma beyond childhood. We aim to create childhood risk scores that predict development and persistence of asthma up to young adult life. METHODS: The Isle of Wight Birth Cohort (n = 1456) was prospectively assessed up to 26 years of age. Asthma predictive scores were developed based on factors during the first 4 years, using logistic regression and tested for sensitivity, specificity and area under the curve (AUC) for prediction of asthma at (i) 18 and (ii) 26 years, and persistent asthma (PA) (iii) at 10 and 18 years, and (iv) at 10, 18 and 26 years. Models were internally and externally validated. RESULTS: Four models were generated for prediction of each asthma outcome. ASthma PredIctive Risk scorE (ASPIRE)-1: a 2-factor model (recurrent wheeze [RW] and positive skin prick test [+SPT] at 4 years) for asthma at 18 years (sensitivity: 0.49, specificity: 0.80, AUC: 0.65). ASPIRE-2: a 3-factor model (RW, +SPT and maternal rhinitis) for asthma at 26 years (sensitivity: 0.60, specificity: 0.79, AUC: 0.73). ASPIRE-3: a 3-factor model (RW, +SPT and eczema at 4 years) for PA-18 (sensitivity: 0.63, specificity: 0.87, AUC: 0.77). ASPIRE-4: a 3-factor model (RW, +SPT at 4 years and recurrent chest infection at 2 years) for PA-26 (sensitivity: 0.68, specificity: 0.87, AUC: 0.80). ASPIRE-1 and ASPIRE-3 scores were replicated externally. Further assessments indicated that ASPIRE-1 can be used in place of ASPIRE-2-4 with same predictive accuracy. CONCLUSION: ASPIRE predicts persistent asthma up to young adult life.


Subject(s)
Asthma , Eczema , Rhinitis , Young Adult , Child, Preschool , Humans , Asthma/diagnosis , Asthma/epidemiology , Asthma/etiology , Risk Factors , Logistic Models , Respiratory Sounds
8.
Elife ; 122023 05 25.
Article in English | MEDLINE | ID: mdl-37227431

ABSTRACT

Background: Many genes associated with asthma explain only a fraction of its heritability. Most genome-wide association studies (GWASs) used a broad definition of 'doctor-diagnosed asthma', thereby diluting genetic signals by not considering asthma heterogeneity. The objective of our study was to identify genetic associates of childhood wheezing phenotypes. Methods: We conducted a novel multivariate GWAS meta-analysis of wheezing phenotypes jointly derived using unbiased analysis of data collected from birth to 18 years in 9568 individuals from five UK birth cohorts. Results: Forty-four independent SNPs were associated with early-onset persistent, 25 with pre-school remitting, 33 with mid-childhood remitting, and 32 with late-onset wheeze. We identified a novel locus on chr9q21.13 (close to annexin 1 [ANXA1], p<6.7 × 10-9), associated exclusively with early-onset persistent wheeze. We identified rs75260654 as the most likely causative single nucleotide polymorphism (SNP) using Promoter Capture Hi-C loops, and then showed that the risk allele (T) confers a reduction in ANXA1 expression. Finally, in a murine model of house dust mite (HDM)-induced allergic airway disease, we demonstrated that anxa1 protein expression increased and anxa1 mRNA was significantly induced in lung tissue following HDM exposure. Using anxa1-/- deficient mice, we showed that loss of anxa1 results in heightened airway hyperreactivity and Th2 inflammation upon allergen challenge. Conclusions: Targeting this pathway in persistent disease may represent an exciting therapeutic prospect. Funding: UK Medical Research Council Programme Grant MR/S025340/1 and the Wellcome Trust Strategic Award (108818/15/Z) provided most of the funding for this study.


Three-quarters of children hospitalized for wheezing or asthma symptoms are preschool-aged. Some will continue to experience breathing difficulties through childhood and adulthood. Others will undergo a complete resolution of their symptoms by the time they reach elementary school. The varied trajectories of young children with wheezing suggest that it is not a single disease. There are likely different genetic or environmental causes. Despite these differences, wheezing treatments for young children are 'one size fits all.' Studying the genetic underpinnings of wheezing may lead to more customized treatment options. Granell et al. studied the genetic architecture of different patterns of wheezing from infancy to adolescence. To do so, they used machine learning technology to analyze the genomes of 9,568 individuals, who participated in five studies in the United Kingdom from birth to age 18. The experiments found a new genetic variation in the ANXA1 gene linked with persistent wheezing starting in early childhood. By comparing mice with and without this gene, Granell et al. showed that the protein encoded by ANXA1 controls inflammation in the lungs in response to allergens. Animals lacking the protein develop worse lung inflammation after exposure to dust mite allergens. Identifying a new gene linked to a specific subtype of wheezing might help scientists develop better strategies to diagnose, treat, and prevent asthma. More studies are needed on the role of the protein encoded by ANXA1 in reducing allergen-triggered lung inflammation to determine if this protein or therapies that boost its production may offer relief for chronic lung inflammation.


Subject(s)
Asthma , Hypersensitivity , Animals , Mice , Asthma/genetics , Asthma/diagnosis , Genome-Wide Association Study , Phenotype , Respiratory Sounds/genetics , Annexins/genetics
9.
BMJ Open Respir Res ; 10(1)2023 05.
Article in English | MEDLINE | ID: mdl-37130649

ABSTRACT

BACKGROUND: Decreased adult lung function is associated with subsequent impairment in cognition. A similar relationship in early life could be of great policy importance, since childhood cognitive ability determines key adult outcomes, including socioeconomic status and mortality. We aimed to expand the very limited data available on this relationship in children, and hypothesised that reduced lung function would be longitudinally associated with decreased cognitive ability. METHODS: Lung function was measured at age 8 (forced expiratory volume in one second (FEV1), forced vital capacity (FVC); % predicted), and cognitive ability was measured at ages 8 (Wechsler Intelligence Scale for Children, third edition) and 15 (Wechsler Abbreviated Scale of Intelligence), in the Avon Longitudinal Study of Parents and Children. Potential confounders were identified as preterm birth, birth weight, breastfeeding duration, prenatal maternal smoking, childhood environmental tobacco smoke exposure, socioeconomic status and prenatal/childhood air pollution exposure. Univariable and multivariable linear models (n range=2332-6672) were fitted to assess the cross-sectional and longitudinal associations of lung function with cognitive ability, and change in cognitive ability between ages 8 and 15. RESULTS: In univariate analyses, both FEV1 and FVC at age 8 were associated with cognitive ability at both ages, but after adjustment, only FVC was associated with full-scale IQ (FSIQ) at ages 8 (ß=0.09 (95% CI 0.05 to 0.12; p<0.001)) and 15 (ß=0.06 (0.03 to 0.10; p=0.001)). We did not find evidence of an association between either lung function parameter and interval change in standardised FSIQ. DISCUSSION: Reduced FVC, but not FEV1, is independently associated with decreased cognitive ability in children. This low-magnitude association attenuates between ages 8 and 15, while no association is evident with longitudinal change in cognitive ability. Our results support a link between FVC and cognition across the life course, possibly due to shared genetic or environmental risk, rather than causation.


Subject(s)
Lung , Premature Birth , Adult , Female , Pregnancy , Humans , Child , Infant, Newborn , Adolescent , Cohort Studies , Longitudinal Studies , Cross-Sectional Studies , Cognition , United Kingdom/epidemiology
10.
Respir Res ; 24(1): 82, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36927379

ABSTRACT

BACKGROUND: Longitudinal epidemiological data are scarce examining the relationship between dietary patterns and respiratory outcomes in childhood. We investigated whether three distinct dietary patterns in mid-childhood were associated with lung function and incident asthma in adolescence. METHODS: In the Avon Longitudinal Study of Parents and Children, 'processed', 'traditional', and 'health-conscious' dietary patterns were identified using principal components analysis from food frequency questionnaires at 7 years of age. Post-bronchodilator forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), and forced expiratory flow at 25-75% of FVC (FEF25-75) were measured at 15.5 years and were transformed to z-scores based on the Global Lung Function Initiative curves. Incident asthma was defined by new cases of doctor-diagnosed asthma at age 11 or 14 years. RESULTS: In multivariable-adjusted models, the 'health-conscious' pattern was positively associated with FEV1 (regression coefficient comparing top versus bottom quartile of pattern score 0.16, 95% CI 0.01 to 0.31, P for trend 0.04) and FVC (0.18, 95% CI 0.04 to 0.33, P for trend 0.02), while the 'processed' pattern was negatively associated with FVC (- 0.17, 95% CI - 0.33 to - 0.01, P for trend 0.03). Associations between the 'health-conscious' and 'processed' patterns and lung function were modified by SCGB1A1 and GPX4 gene polymorphisms. We found no evidence of an association between the 'traditional' pattern and lung function, nor between any pattern and FEF25-75 or incident asthma. CONCLUSIONS: A 'health-conscious' diet in mid-childhood was associated with higher subsequent lung function, while a diet high in processed food was associated with lower lung function.


Subject(s)
Asthma , Adolescent , Humans , Child , Longitudinal Studies , Asthma/diagnosis , Asthma/epidemiology , Diet/adverse effects , Vital Capacity , Forced Expiratory Volume , Lung
11.
J Allergy Clin Immunol ; 151(2): 423-430, 2023 02.
Article in English | MEDLINE | ID: mdl-36273658

ABSTRACT

BACKGROUND: Asthma-associated single nucleotide polymorphisms from large genome-wide association studies only explain a fraction of genetic heritability. Likely causes of the missing heritability include broad phenotype definitions and gene-environment interactions (GxE). The mechanisms underlying GxE in asthma are poorly understood. Previous GxE studies on pet ownership showed discordant results. OBJECTIVES: We sought to study the GxE between the 17q12-21 locus and pet ownership in infancy in relation to wheeze. METHODS: Wheezing classes derived from 5 UK-based birth cohorts (latent class analysis) were used to study GxE between the 17q12-21 asthma-risk variant rs2305480 and dog and cat ownership in infancy, using multinomial logistic regression. A total of 9149 children had both pet ownership and genotype data available. Summary statistics from individual analyses were meta-analyzed. RESULTS: rs2305480 G allele was associated with increased risk of persistent wheeze (additive model odds ratio, 1.37; 95% CI, 1.25-1.51). There was no evidence of an association between dog or cat ownership and wheeze. We found significant evidence of a GxE interaction between rs2305480 and dog ownership (P = 8.3 × 10-4) on persistent wheeze; among dog owners, the G allele was no longer associated with an increased risk of persistent wheeze (additive model odds ratio, 0.95; 95% CI, 0.73-1.24). For those without pets, G allele was associated with increased risk of persistent wheeze (odds ratio, 1.61; 95% CI, 1.40-1.86). Among cat owners, no such dampening of the genetic effect was observed. CONCLUSIONS: Among dog owners, rs2305480 G was no longer associated with an increased risk of persistent wheeze (or asthma). Early-life environmental exposures may therefore attenuate likelihood of asthma in those carrying 17q12-21 risk alleles.


Subject(s)
Asthma , Cat Diseases , Dog Diseases , Animals , Dogs , Cats , Respiratory Sounds/genetics , Ownership , Genome-Wide Association Study , Dog Diseases/epidemiology , Dog Diseases/genetics , Asthma/epidemiology , Asthma/genetics , Risk Factors
12.
Eur Respir J ; 61(3)2023 03.
Article in English | MEDLINE | ID: mdl-36265880

ABSTRACT

RATIONALE: Early-life exposures may influence lung function at different stages of the life course. However, the relative importance of characteristics at different stages of infancy and childhood are unclear. OBJECTIVES: To examine the associations and relative importance of early-life events on lung function at age 24 years. METHODS: We followed 7545 children from the Avon Longitudinal Study of Parents and Children from birth to 24 years. Using previous knowledge, we classified an extensive list of putative risk factors for low lung function, covering sociodemographic, environmental, lifestyle and physiological characteristics, according to timing of exposure: 1) demographic, maternal and child; 2) perinatal; 3) postnatal; 4) early childhood; and 5) adolescence characteristics. Lung function measurements (forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), FEV1/FVC and forced expiratory flow at 25-75% of FVC) were standardised for sex, age and height. The proportion of the remaining variance explained by each characteristic was calculated. The association and relative importance (RI) of each characteristic for each lung function measure was estimated using linear regression, adjusted for other characteristics in the same and previous categories. RESULTS: Lower maternal perinatal body mass index (BMI), lower birthweight, lower lean mass and higher fat mass in childhood had the largest RI (0.5-7.7%) for decreased FVC. Having no siblings, lower birthweight, lower lean mass and higher fat mass were associated with decreased FEV1 (RI 0.5-4.6%). Higher lean mass and childhood asthma were associated with decreased FEV1/FVC (RI 0.6-0.8%). CONCLUSIONS: Maternal perinatal BMI, birthweight, childhood lean and fat mass and early-onset asthma are the factors in infancy and childhood that have the greatest influence on early-adult lung function.


Subject(s)
Asthma , Lung , Child , Female , Adult , Pregnancy , Adolescent , Humans , Child, Preschool , Young Adult , Longitudinal Studies , Birth Weight , Vital Capacity/physiology , Forced Expiratory Volume , Health Behavior
13.
Lancet Child Adolesc Health ; 7(2): 127-135, 2023 02.
Article in English | MEDLINE | ID: mdl-36435180

ABSTRACT

BACKGROUND: Developmental trajectories of childhood wheezing in low-income and middle-income countries (LMICs) have not been well described. We aimed to derive longitudinal wheeze phenotypes from birth to 5 years in a South African birth cohort and compare those with phenotypes derived from a UK cohort. METHODS: We used data from the Drakenstein Child Health Study (DCHS), a longitudinal birth cohort study in a peri-urban area outside Cape Town, South Africa. Pregnant women (aged ≥18 years) were enrolled during their second trimester at two public health clinics. We followed up children from birth to 5 years to derive six multidimensional indicators of wheezing (including duration, temporal sequencing, persistence, and recurrence) and applied Partition Around Medoids clustering to derive wheeze phenotypes. We compared phenotypes with a UK cohort (the Avon Longitudinal Study of Parents and Children [ALSPAC]). We investigated associations of phenotypes with early-life exposures, including all-cause lower respiratory tract infection (LRTI) and virus-specific LRTI (respiratory syncytial virus, rhinovirus, adenovirus, influenza, and parainfluenza virus) up to age 5 years. We investigated the association of phenotypes with lung function at 6 weeks and 5 years. FINDINGS: Between March 5, 2012, and March 31, 2015, we enrolled 1137 mothers and there were 1143 livebirths. Four wheeze phenotypes were identified among 950 children with complete data: never (480 children [50%]), early transient (215 children [23%]), late onset (104 children [11%]), and recurrent (151 children [16%]). Multivariate adjusted analysis indicated that LRTI and respiratory syncytial virus-LRTI, but not other respiratory viruses, were associated with increased risk of recurrent wheeze (odds ratio [OR] 2·79 [95% CI 2·05-3·81] for all LTRIs; OR 2·59 [1·30-5·15] for respiratory syncytial virus-LRTIs). Maternal smoking (1·88 [1·12-3·02]), higher socioeconomic status (2·46 [1·23-4·91]), intimate partner violence (2·01 [1·23-3·29]), and male sex (2·47 [1·50-4·04]) were also associated with recurrent wheeze. LRTI and respiratory syncytial virus-LRTI were also associated with early transient and late onset clusters. Wheezing illness architecture differed between DCHS and ALSPAC; children included in ALSPAC in the early transient cluster wheezed for a longer period before remission and late-onset wheezing started at an older age, and no persistent phenotype was identified in DCHS. At 5 years, airway resistance was higher in children with early or recurrent wheeze compared with children who had never wheezed. Airway resistance increased from 6 weeks to 5 years among children with recurrent wheeze. INTERPRETATION: Effective strategies to reduce maternal smoking and psychosocial stressors and new preventive interventions for respiratory syncytial virus are urgently needed to optimise child health in LMICs. FUNDING: UK Medical Research Council; The Bill & Melinda Gates Foundation; National Institutes of Health Human Heredity and Health in Africa; South African Medical Research Council; Wellcome Trust.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , United States , Child , Humans , Male , Child, Preschool , Female , Pregnancy , Adolescent , Adult , Cohort Studies , Longitudinal Studies , South Africa/epidemiology , Respiratory Sounds/genetics , Child Health , Respiratory Tract Infections/epidemiology , Respiratory Syncytial Virus Infections/epidemiology , Phenotype
14.
Pediatr Allergy Immunol ; 33(12): e13894, 2022 12.
Article in English | MEDLINE | ID: mdl-36564882

ABSTRACT

BACKGROUND: We previously reported an association of high fat mass levels from age 9 to 15 years with lower forced expiratory flow in 1 s (FEV1 )/forced vital capacity (FVC) ratio (i.e., increased risk of airflow limitation) at 15 years. Here, we aimed to assess whether insulin resistance and C-reactive protein (CRP) at 15 years partially mediate this association. METHODS: We included 2263 children from the UK Avon Longitudinal Study of Parents and Children population-based cohort (ALSPAC). Four fat mass index (FMI) trajectories ("low," "medium-low," "medium-high," "high") from 9 to 15 years were previously identified using Group-Based Trajectory Modeling. Data on CRP, glucose, insulin, and post-bronchodilator FEV1 /FVC were available at 15 years. We defined insulin resistance by the homeostasis model assessment-estimated insulin resistance index (HOMA-IR). We used adjusted linear regression models and a causal mediation analysis to assess the mediating role of HOMA-IR and CRP. RESULTS: Compared to children in the "low" FMI trajectory, children in the "medium-high" and "high" FMI trajectories had lower FEV1 /FVC at 15 years. The percentage of the total effect explained by HOMA-IR was 19.8% [-114.1 to 170.0] and 20.4% [1.6 to 69.0] for the "medium-high" and "high" trajectories, respectively. In contrast, there was little evidence for a mediating role of CRP. CONCLUSION: The association between mid-childhood fat mass and FEV1 /FVC ratio at 15 years may be partially mediated by insulin resistance.


Subject(s)
C-Reactive Protein , Insulin Resistance , Child , Humans , Adolescent , C-Reactive Protein/metabolism , Longitudinal Studies , Lung/metabolism , Vital Capacity , Forced Expiratory Volume
15.
Am J Respir Crit Care Med ; 206(8): 950-960, 2022 10 15.
Article in English | MEDLINE | ID: mdl-35679320

ABSTRACT

Rationale: The relationship between eczema, wheeze or asthma, and rhinitis is complex, and epidemiology and mechanisms of their comorbidities is unclear. Objectives: To investigate within-individual patterns of morbidity of eczema, wheeze, and rhinitis from birth to adolescence/early adulthood. Methods: We investigated onset, progression, and resolution of eczema, wheeze, and rhinitis using descriptive statistics, sequence mining, and latent Markov modeling in four population-based birth cohorts. We used logistic regression to ascertain if early-life eczema or wheeze, or genetic factors (filaggrin [FLG] mutations and 17q21 variants), increase the risk of multimorbidity. Measurements and Main Results: Single conditions, although the most prevalent, were observed significantly less frequently than by chance. There was considerable variation in the timing of onset/remission/persistence/intermittence. Multimorbidity of eczema+wheeze+rhinitis was rare but significantly overrepresented (three to six times more often than by chance). Although infantile eczema was associated with subsequent multimorbidity, most children with eczema (75.4%) did not progress to any multimorbidity pattern. FLG mutations and rs7216389 were not associated with persistence of eczema/wheeze as single conditions, but both increased the risk of multimorbidity (FLG by 2- to 3-fold, rs7216389 risk variant by 1.4- to 1.7-fold). Latent Markov modeling revealed five latent states (no disease/low risk, mainly eczema, mainly wheeze, mainly rhinitis, multimorbidity). The most likely transition to multimorbidity was from eczema state (0.21). However, although this was one of the highest transition probabilities, only one-fifth of those with eczema transitioned to multimorbidity. Conclusions: Atopic diseases fit a multimorbidity framework, with no evidence for sequential atopic march progression. The highest transition to multimorbidity was from eczema, but most children with eczema (more than three-quarters) had no comorbidities.


Subject(s)
Eczema , Rhinitis , Adolescent , Adult , Birth Cohort , Child , Cohort Studies , Disease Susceptibility , Eczema/epidemiology , Eczema/genetics , Humans , Respiratory Sounds/genetics , Rhinitis/complications , Rhinitis/epidemiology , Rhinitis/genetics
16.
Pediatr Allergy Immunol ; 33(6): e13802, 2022 06.
Article in English | MEDLINE | ID: mdl-35754128

ABSTRACT

BACKGROUND: Asthma exacerbations are a serious public health concern due to high healthcare resource utilization, work/school productivity loss, impact on quality of life, and risk of mortality. The genetic basis of asthma exacerbations has been studied in several populations, but no prior study has performed a multi-ancestry meta-analysis of genome-wide association studies (meta-GWAS) for this trait. We aimed to identify common genetic loci associated with asthma exacerbations across diverse populations and to assess their functional role in regulating DNA methylation and gene expression. METHODS: A meta-GWAS of asthma exacerbations in 4989 Europeans, 2181 Hispanics/Latinos, 1250 Singaporean Chinese, and 972 African Americans analyzed 9.6 million genetic variants. Suggestively associated variants (p ≤ 5 × 10-5 ) were assessed for replication in 36,477 European and 1078 non-European asthma patients. Functional effects on DNA methylation were assessed in 595 Hispanic/Latino and African American asthma patients and in publicly available databases. The effect on gene expression was evaluated in silico. RESULTS: One hundred and twenty-six independent variants were suggestively associated with asthma exacerbations in the discovery phase. Two variants independently replicated: rs12091010 located at vascular cell adhesion molecule-1/exostosin like glycosyltransferase-2 (VCAM1/EXTL2) (discovery: odds ratio (ORT allele ) = 0.82, p = 9.05 × 10-6 and replication: ORT allele  = 0.89, p = 5.35 × 10-3 ) and rs943126 from pantothenate kinase 1 (PANK1) (discovery: ORC allele  = 0.85, p = 3.10 × 10-5 and replication: ORC allele  = 0.89, p = 1.30 × 10-2 ). Both variants regulate gene expression of genes where they locate and DNA methylation levels of nearby genes in whole blood. CONCLUSIONS: This multi-ancestry study revealed novel suggestive regulatory loci for asthma exacerbations located in genomic regions participating in inflammation and host defense.


Subject(s)
Asthma , Genome-Wide Association Study , Asthma/genetics , Genetic Predisposition to Disease , Hispanic or Latino/genetics , Humans , Polymorphism, Single Nucleotide , Quality of Life
18.
Eur Respir J ; 60(4)2022 10.
Article in English | MEDLINE | ID: mdl-35487537

ABSTRACT

BACKGROUND: Early-life respiratory tract infections might affect chronic obstructive respiratory diseases, but conclusive studies from general populations are lacking. Our objective was to examine if children with early-life respiratory tract infections had increased risks of lower lung function and asthma at school age. METHODS: We used individual participant data of 150 090 children primarily from the EU Child Cohort Network to examine the associations of upper and lower respiratory tract infections from age 6 months to 5 years with forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), FEV1/FVC, forced expiratory flow at 75% of FVC (FEF75%) and asthma at a median (range) age of 7 (4-15) years. RESULTS: Children with early-life lower, not upper, respiratory tract infections had a lower school-age FEV1, FEV1/FVC and FEF75% (z-score range: -0.09 (95% CI -0.14- -0.04) to -0.30 (95% CI -0.36- -0.24)). Children with early-life lower respiratory tract infections had a higher increased risk of school-age asthma than those with upper respiratory tract infections (OR range: 2.10 (95% CI 1.98-2.22) to 6.30 (95% CI 5.64-7.04) and 1.25 (95% CI 1.18-1.32) to 1.55 (95% CI 1.47-1.65), respectively). Adjustment for preceding respiratory tract infections slightly decreased the strength of the effects. Observed associations were similar for those with and without early-life wheezing as a proxy for early-life asthma. CONCLUSIONS: Our findings suggest that early-life respiratory tract infections affect development of chronic obstructive respiratory diseases in later life, with the strongest effects for lower respiratory tract infections.


Subject(s)
Asthma , Respiratory Tract Infections , Child, Preschool , Forced Expiratory Volume , Humans , Infant , Lung , Prospective Studies , Vital Capacity
19.
Am J Respir Crit Care Med ; 205(8): 883-893, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35050846

ABSTRACT

Rationale: Longitudinal modeling of current wheezing identified similar phenotypes, but their characteristics often differ between studies. Objectives: We propose that a more comprehensive description of wheeze may better describe trajectories than binary information on the presence/absence of wheezing. Methods: We derived six multidimensional variables of wheezing spells from birth to adolescence (including duration, temporal sequencing, and the extent of persistence/recurrence). We applied partition-around-medoids clustering on these variables to derive phenotypes in five birth cohorts. We investigated within- and between-phenotype differences compared with binary latent class analysis models and ascertained associations of these phenotypes with asthma and lung function and with polymorphisms in asthma loci 17q12-21 and CDHR3 (cadherin-related family member 3). Measurements and Main Results: Analysis among 7,719 participants with complete data identified five spell-based wheeze phenotypes with a high degree of certainty: never (54.1%), early-transient (ETW) (23.7%), late-onset (LOW) (6.9%), persistent (PEW) (8.3%), and a novel phenotype, intermittent wheeze (INT) (6.9%). FEV1/FVC was lower in PEW and INT compared with ETW and LOW and declined from age 8 years to adulthood in INT. 17q12-21 and CDHR3 polymorphisms were associated with higher odds of PEW and INT, but not ETW or LOW. Latent class analysis- and spell-based phenotypes appeared similar, but within-phenotype individual trajectories and phenotype allocation differed substantially. The spell-based approach was much more robust in dealing with missing data, and the derived clusters were more stable and internally homogeneous. Conclusions: Modeling of spell variables identified a novel intermittent wheeze phenotype associated with lung function decline to early adulthood. Using multidimensional spell variables may better capture wheeze development and provide a more robust input for phenotype derivation.


Subject(s)
Asthma , Respiratory Sounds , Adult , Cadherin Related Proteins , Cadherins/genetics , Humans , Infant , Latent Class Analysis , Membrane Proteins/genetics , Phenotype , Respiratory Function Tests , Respiratory Sounds/genetics , Risk Factors
20.
Clin Exp Allergy ; 52(1): 70-81, 2022 01.
Article in English | MEDLINE | ID: mdl-34155719

ABSTRACT

BACKGROUND: Numerous genes have been associated with the three most common allergic diseases (asthma, allergic rhinitis or eczema) but these genes explain only a part of the heritability. In the vast majority of genetic studies, complex phenotypes such as co-morbidity of two of these diseases, have not been considered. This may partly explain missing heritability. OBJECTIVE: To identify genetic variants specifically associated with the co-morbidity of asthma-plus-eczema. METHODS: We first conducted a meta-analysis of four GWAS (Genome-Wide Association Study) of the combined asthma-plus-eczema phenotype (total of 8807 European-ancestry subjects of whom 1208 subjects had both asthma and eczema). To assess whether the association with SNP(s) was specific to the co-morbidity, we also conducted a meta-analysis of homogeneity test of association according to disease status ("asthma-plus-eczema" vs. the presence of only one disease "asthma only or eczema only"). We then used a joint test by combining the two test statistics from the co-morbidity-SNP association and the phenotypic heterogeneity of SNP effect meta-analyses. RESULTS: Seven SNPs were detected for specific association to the asthma-plus-eczema co-morbidity, two with significant and five with suggestive evidence using the joint test after correction for multiple testing. The two significant SNPs are located in the OCA2 gene (Oculocutaneous Albinism II), a new locus never detected for significant evidence of association with any allergic disease. This gene is a promising candidate gene, because of its link to skin and lung diseases, and to epithelial barrier and immune mechanisms. CONCLUSION: Our study underlines the importance of studying sub-phenotypes as co-morbidities to detect new susceptibility genes.


Subject(s)
Albinism, Oculocutaneous , Asthma , Eczema , Rhinitis, Allergic , Asthma/epidemiology , Asthma/genetics , Comorbidity , Eczema/epidemiology , Eczema/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Membrane Transport Proteins/genetics , Morbidity , Rhinitis, Allergic/epidemiology , Rhinitis, Allergic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...