Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Pharmaceutics ; 15(12)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38140081

ABSTRACT

Nanomedicines engineered to deliver molecules with therapeutic potentials, overcoming drawbacks such as poor solubility, toxicity or a short half-life, are targeted towards their cellular destination either passively or through various elements of cell membranes. The differences in the physicochemical properties of the cell membrane between tumor and nontumor cells have been reported, but they are not systematically used for drug delivery purposes. Thus, in this study, a new approach based on a match between the liposome compositions, i.e., membrane fluidity, to selectively interact with the targeted cell membrane was used. Lipid-based carriers of two different fluidities were designed and used to deliver 4(RS)-4-F4t-Neuroprostane (F4t-NeuroP), a potential antitumor molecule derived from docosahexaenoic acid (DHA). Based on its hydrophobic character, F4t-NeuroP was added to the lipid mixture prior to liposome formation, a protocol that yielded over 80% encapsulation efficiency in both rigid and fluid liposomes. The presence of the active molecule did not modify the liposome size but increased the liposome negative charge and the liposome membrane fluidity, which suggested that the active molecule was accommodated in the lipid membrane. F4t-NeuroP integration in liposomes with a fluid character allowed for the selective targeting of the metastatic prostate cell line PC-3 vs. fibroblast controls. A significant decrease in viability (40%) was observed for the PC-3 cancer line in the presence of F4t-NeuroP fluid liposomes, whereas rigid F4t-NeuroP liposomes did not alter the PC-3 cell viability. These findings demonstrate that liposomes encapsulating F4t-NeuroP or other related molecules may be an interesting model of drug carriers based on membrane fluidity.

2.
J Control Release ; 353: 1037-1049, 2023 01.
Article in English | MEDLINE | ID: mdl-36442614

ABSTRACT

mRNA based infectious disease vaccines have opened the venue for development of novel nucleic acids-based therapeutics. For all mRNA therapeutics dedicated delivery systems are required, where different functionalities and targeting abilities need to be optimized for the respective applications. One option for advanced formulations with tailored properties are lipid-polymer hybrid nanoparticles with complex nanostructure, which allow to combine features of several already well described nucleic acid delivery systems. Here, we explored hyaluronic acid (HA) as coating of liposome-mRNA complexes (LRCs) to investigate effects of the coating on surface charge, physicochemical characteristics and biological activity. HA was electrostatically attached to positively charged complexes, forming hybrid LRCs (HLRCs). At different N/P ratios, physico-chemical characterization of the two sets of particles showed similarity in size (around 200 nm) and mRNA binding abilities, while the presence of the HA shell conferred a negative surface charge to otherwise positive complexes. High transfection efficiency of LRCs and HLRCs in vitro has been obtained in THP-1 and human monocytes derived from PBMC, an interesting target cell population for cancer and immune related pathologies. In mice, quantitative biodistribution of radiolabeled LRC and HLRC particles, coupled with bioluminescence studies to detect the protein translation sites, hinted towards both particles' accumulation in the hepatic reticuloendothelial system (RES). mRNA translated proteins though was found mainly in the spleen, a major source for immune cells, with preference for expression in macrophages. The results showed that surface modifications of liposome-mRNA complexes can be used to fine-tune nanoparticle physico-chemical characteristics. This provides a tool for assembly of stable and optimized nanoparticles, which are prerequisite for future therapeutic interventions using mRNA-based nanomedicines.


Subject(s)
Nanoparticles , Nucleic Acids , Mice , Humans , Animals , Liposomes/chemistry , Tissue Distribution , Leukocytes, Mononuclear , Polymers/chemistry , Nanoparticles/chemistry , Transfection
3.
Chembiochem ; 24(3): e202200513, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36420688

ABSTRACT

Two florescent xanthene-cyanamide lysosomal trackers emitting strongly at ∼525 nm were prepared from fluorescein and rhodol methyl esters in microwave-assisted reactions. Both forms named "off" (nonfluorescent lactam) and "on" (strongly fluorescent ring-opened amide) have been comprehensively characterized out by using a combination of NMR spectroscopy, X-ray analysis, fluorimetry and confocal microscopy. Known rhodamines bearing electron-withdrawing groups (EWGs) exhibit an equilibrium between non-fluorescent (off) and fluorescent (on) depending on the dielectric constant of the medium. Here, cyanamide was introduced as EWG amine into the fluorescein and rhodol framework. Unlike rhodamine-type dyes, the ring-opened forms of fluorescein- and rhodol-cyanamides are stable in protic solvents under circumneutral and basic pH conditions. The osteoblastic cell line MC3T3-E1 from C57BL/6 mouse calvaria was used for confocal imaging where the different organelles and nuclei were distinguished by using an orthogonal combination of fluorescent dyes.


Subject(s)
Cyanamide , Fluorescent Dyes , Mice , Animals , Mice, Inbred C57BL , Fluorescent Dyes/chemistry , Rhodamines/chemistry , Fluorescein , Lysosomes
4.
Int J Mol Sci ; 23(21)2022 Oct 30.
Article in English | MEDLINE | ID: mdl-36361990

ABSTRACT

The morphology of fibroblast-like synoviocytes (FLS) issued from the synovial fluid (SF) of patients suffering from osteoarthritis (OA), rheumatoid arthritis (RA), or from healthy subjects (H), as well as the ultrastructure and mechanical properties of the FLS-secreted extracellular vesicles (EV), were analyzed by confocal microscopy, transmission electron microscopy, atomic force microscopy, and tribological tests. EV released under healthy conditions were constituted of several lipid bilayers surrounding a viscous inner core. This "gel-in" vesicular structure ensured high mechanical resistance of single vesicles and good tribological properties of the lubricant. RA, and to a lesser extent OA, synovial vesicles had altered morphology, corresponding to a "gel-out" situation with vesicles surrounded by a viscous gel, poor mechanical resistance, and poor lubricating qualities. When subjected to inflammatory conditions, healthy cells developed phenotypes similar to that of RA samples, which reinforces the importance of inflammatory processes in the loss of lubricating properties of SF.


Subject(s)
Arthritis, Rheumatoid , Extracellular Vesicles , Osteoarthritis , Synoviocytes , Humans , Synoviocytes/physiology , Synovial Membrane , Cells, Cultured , Fibroblasts
5.
Int J Mol Sci ; 23(19)2022 Oct 09.
Article in English | MEDLINE | ID: mdl-36233300

ABSTRACT

The quality of the lubricant between cartilaginous joint surfaces impacts the joint's mechanistic properties. In this study, we define the biochemical, ultrastructural, and tribological signatures of synovial fluids (SF) from patients with degenerative (osteoarthritis-OA) or inflammatory (rheumatoid arthritis-RA) joint pathologies in comparison with SF from healthy subjects. Phospholipid (PL) concentration in SF increased in pathological contexts, but the proportion PL relative to the overall lipids decreased. Subtle changes in PL chain composition were attributed to the inflammatory state. Transmission electron microscopy showed the occurrence of large multilamellar synovial extracellular vesicles (EV) filled with glycoprotein gel in healthy subjects. Synovial extracellular vesicle structure was altered in SF from OA and RA patients. RA samples systematically showed lower viscosity than healthy samples under a hydrodynamic lubricating regimen whereas OA samples showed higher viscosity. In turn, under a boundary regimen, cartilage surfaces in both pathological situations showed high wear and friction coefficients. Thus, we found a difference in the biochemical, tribological, and ultrastructural properties of synovial fluid in healthy people and patients with osteoarthritis and arthritis of the joints, and that large, multilamellar vesicles are essential for good boundary lubrication by ensuring a ball-bearing effect and limiting the destruction of lipid layers at the cartilage surface.


Subject(s)
Cartilage, Articular , Extracellular Vesicles , Osteoarthritis , Glycoproteins/analysis , Humans , Lubricants , Phospholipids/analysis , Synovial Fluid/chemistry
6.
Int J Mol Sci ; 23(16)2022 Aug 11.
Article in English | MEDLINE | ID: mdl-36012211

ABSTRACT

The biochemical machinery involved in matrix vesicles-mediated bone mineralization involves a specific set of lipids, enzymes, and proteins. Annexins, among their many functions, have been described as responsible for the formation and stabilization of the matrix vesicles' nucleational core. However, the specific role of each member of the annexin family, especially in the presence of type-I collagen, remains to be clarified. To address this issue, in vitro mineralization was carried out using AnxA6 (in solution or associated to the proteoliposomes) in the presence or in the absence of type-I collagen, incubated with either amorphous calcium phosphate (ACP) or a phosphatidylserine-calcium phosphate complex (PS-CPLX) as nucleators. Proteoliposomes were composed of 1,2-dipalmitoylphosphatidylcholine (DPPC), 1,2-dipalmitoylphosphatidylcholine: 1,2-dipalmitoylphosphatidylserine (DPPC:DPPS), and DPPC:Cholesterol:DPPS to mimic the outer and the inner leaflet of the matrix vesicles membrane as well as to investigate the effect of the membrane fluidity. Kinetic parameters of mineralization were calculated from time-dependent turbidity curves of free Annexin A6 (AnxA6) and AnxA6-containing proteoliposomes dispersed in synthetic cartilage lymph. The chemical composition of the minerals formed was investigated by Fourier transform infrared spectroscopy (FTIR). Free AnxA6 and AnxA6-proteoliposomes in the presence of ACP were not able to propagate mineralization; however, poorly crystalline calcium phosphates were formed in the presence of PS-CPLX, supporting the role of annexin-calcium-phosphatidylserine complex in the formation and stabilization of the matrix vesicles' nucleational core. We found that AnxA6 lacks nucleation propagation capacity when incorporated into liposomes in the presence of PS-CPLX and type-I collagen. This suggests that AnxA6 may interact either with phospholipids, forming a nucleational core, or with type-I collagen, albeit less efficiently, to induce the nucleation process.


Subject(s)
Annexin A6 , Calcinosis , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Annexin A6/metabolism , Collagen/metabolism , Humans , Phosphates/metabolism , Phosphatidylserines/chemistry , Proteolipids
7.
Int J Mol Sci ; 22(8)2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33921088

ABSTRACT

Novel nanomedicines have been engineered to deliver molecules with therapeutic potentials, overcoming drawbacks such as poor solubility, toxicity or short half-life. Lipid-based carriers such as liposomes represent one of the most advanced classes of drug delivery systems. A Monomethyl Auristatin E (MMAE) warhead was grafted on a lipid derivative and integrated in fusogenic liposomes, following the model of antibody drug conjugates. By modulating the liposome composition, we designed a set of particles characterized by different membrane fluidities as a key parameter to obtain selective uptake from fibroblast or prostate tumor cells. Only the fluid liposomes made of palmitoyl-oleoyl-phosphatidylcholine and dioleoyl-phosphatidylethanolamine, integrating the MMAE-lipid derivative, showed an effect on prostate tumor PC-3 and LNCaP cell viability. On the other hand, they exhibited negligible effects on the fibroblast NIH-3T3 cells, which only interacted with rigid liposomes. Therefore, fluid liposomes grafted with MMAE represent an interesting example of drug carriers, as they can be easily engineered to promote liposome fusion with the target membrane and ensure drug selectivity.


Subject(s)
Oligopeptides/pharmacology , Prostatic Neoplasms/pathology , Animals , Cell Line, Tumor , Cell Survival/drug effects , Humans , Liposomes , Male , Membrane Fluidity/drug effects , Mice , NIH 3T3 Cells , Particle Size , Time Factors , Triglycerides/chemistry
8.
Environ Health Perspect ; 128(12): 127006, 2020 12.
Article in English | MEDLINE | ID: mdl-33296241

ABSTRACT

BACKGROUND: Aryl phosphate esters (APEs) are widely used and commonly present in the environment. Health hazards associated with these compounds remain largely unknown and the effects of diphenyl phosphate (DPhP), one of their most frequent derivatives, are poorly characterized. OBJECTIVE: Our aim was to investigate whether DPhP per se may represent a more relevant marker of exposure to APEs than direct assessment of their concentration and determine its potential deleterious biological effects in chronically exposed mice. METHODS: Conventional animals (FVB mice) were acutely or chronically exposed to relevant doses of DPhP or to triphenyl phosphate (TPhP), one of its main precursors. Both molecules were measured in blood and other tissues by liquid chromatography-mass spectrometry (LC-MS). Effects of chronic DPhP exposure were addressed through liver multi-omics analysis to determine the corresponding metabolic profile. Deep statistical exploration was performed to extract correlated information, guiding further physiological analyses. RESULTS: Multi-omics analysis confirmed the existence of biological effects of DPhP, even at a very low dose of 0.1mg/mL in drinking water. Chemical structural homology and pathway mapping demonstrated a clear reduction of the fatty acid catabolic processes centered on acylcarnitine and mitochondrial ß-oxidation in mice exposed to DPhP in comparison with those treated with vehicle. An interesting finding was that in mice exposed to DPhP, mRNA, expression of genes involved in lipid catabolic processes and regulated by peroxisome proliferator-activated receptor alpha (PPARα) was lower than that in vehicle-treated mice. Immunohistochemistry analysis showed a specific down-regulation of HMGCS2, a kernel target gene of PPARα. Overall, DPhP absorption disrupted body weight-gain processes. CONCLUSIONS: Our results suggest that in mice, the effects of chronic exposure to DPhP, even at a low dose, are not negligible. Fatty acid metabolism in the liver is essential for controlling fast and feast periods, with adverse consequences on the overall physiology. Therefore, the impact of DPhP on circulating fat, cardiovascular pathologies and metabolic disease incidence deserves, in light of our results, further investigations. https://doi.org/10.1289/EHP6826.


Subject(s)
Environmental Pollutants/toxicity , Phosphates/toxicity , Animals , Esters/toxicity , Mice , Models, Chemical , Toxicity Tests
9.
Langmuir ; 36(19): 5134-5144, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32338922

ABSTRACT

Lipid-based carriers such as liposomes represent one of the most advanced classes of drug delivery systems. Their clinical success relies on their composition, similar to that of the cell membrane. Their cellular specificity often relies on a ligand-receptor interaction. Although differences in the physicochemical properties of the cell membrane between tumor and nontumor cells have been reported, they are not systematically used for drug delivery purposes. In this report, a new approach was developed to ensure selective targeting based on physical compatibility between the target and the carrier membranes. By modulating the liposome composition and thus its membrane fluidity, we achieved selective targeting on four cancer cell lines of varying aggressiveness. Furthermore, using membrane-embedded and inner core-encapsulated fluorophores, we assessed the mechanism of this interaction to be based on the fusion of the liposome with the cell membranes. Membrane fluidity is therefore a major parameter to be considered when designing lipid drug carriers as a promising, lower cost alternative to current targeting strategies based on covalent grafting.


Subject(s)
Membrane Fluidity , Neoplasms , Drug Delivery Systems , Humans , Lipids , Liposomes , Neoplasms/drug therapy
10.
Int J Mol Sci ; 21(4)2020 Feb 18.
Article in English | MEDLINE | ID: mdl-32085611

ABSTRACT

Annexin A6 (AnxA6) is the largest member of the annexin family of proteins present in matrix vesicles (MVs). MVs are a special class of extracellular vesicles that serve as a nucleation site during cartilage, bone, and mantle dentin mineralization. In this study, we assessed the localization of AnxA6 in the MV membrane bilayer using native MVs and MV biomimetics. Biochemical analyses revealed that AnxA6 in MVs can be divided into three distinct groups. The first group corresponds to Ca2+-bound AnxA6 interacting with the inner leaflet of the MV membrane. The second group corresponds to AnxA6 localized on the surface of the outer leaflet. The third group corresponds to AnxA6 inserted in the membrane's hydrophobic bilayer and co-localized with cholesterol (Chol). Using monolayers and proteoliposomes composed of either dipalmitoylphosphatidylcholine (DPPC) to mimic the outer leaflet of the MV membrane bilayer or a 9:1 DPPC:dipalmitoylphosphatidylserine (DPPS) mixture to mimic the inner leaflet, with and without Ca2+, we confirmed that, in agreement with the biochemical data, AnxA6 interacted differently with the MV membrane. Thermodynamic analyses based on the measurement of surface pressure exclusion (πexc), enthalpy (ΔH), and phase transition cooperativity (Δt1/2) showed that AnxA6 interacted with DPPC and 9:1 DPPC:DPPS systems and that this interaction increased in the presence of Chol. The selective recruitment of AnxA6 by Chol was observed in MVs as probed by the addition of methyl-ß-cyclodextrin (MßCD). AnxA6-lipid interaction was also Ca2+-dependent, as evidenced by the increase in πexc in negatively charged 9:1 DPPC:DPPS monolayers and the decrease in ΔH in 9:1 DPPC:DPPS proteoliposomes caused by the addition of AnxA6 in the presence of Ca2+ compared to DPPC zwitterionic bilayers. The interaction of AnxA6 with DPPC and 9:1 DPPC:DPPS systems was distinct even in the absence of Ca2+ as observed by the larger change in Δt1/2 in 9:1 DPPC:DPPS vesicles as compared to DPPC vesicles. Protrusions on the surface of DPPC proteoliposomes observed by atomic force microscopy suggested that oligomeric AnxA6 interacted with the vesicle membrane. Further work is needed to delineate possible functions of AnxA6 at its different localizations and ways of interaction with lipids.


Subject(s)
Annexin A6/metabolism , Calcification, Physiologic , Extracellular Matrix/metabolism , Extracellular Vesicles/metabolism , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Calorimetry, Differential Scanning , Cholesterol/metabolism , Humans , Lipid Bilayers/metabolism , Membrane Microdomains/metabolism , Microscopy, Atomic Force , Proteolipids/metabolism
11.
Biochim Biophys Acta Gen Subj ; 1861(5 Pt A): 969-976, 2017 May.
Article in English | MEDLINE | ID: mdl-28185927

ABSTRACT

BACKGROUND: Mitochondrial creatine kinase (mtCK) is highly abundant in mitochondria; its quantity is equimolecular to the Adenylic Nucleotide Translocator and represents 1% of the mitochondrial proteins. It is a multitask protein localized in the mitochondria intermembrane space where it binds to the specific cardiolipin (CL) phospholipid. If mtCK was initially thought to be exclusively implicated in energy transfer between mitochondria and cytosol through a mechanism referred to as the phosphocreatine shuttle, several recent studies suggested an additional role in maintaining mitochondria membrane structure. METHODS: To further characterized mtCK binding process we used multiphoton excitation fluorescence microscopy coupled with Giant Unilamellar Vesicles (GUV) and laurdan as fluorescence probe. RESULTS: We gathered structural and dynamical information on the molecular events occurring during the binding of mtCK to the mitochondria inner membrane. We present the first visualization of mtCK-induced CL segregation on a bilayer model forming micrometer-size proteolipid domains at the surface of the GUV. Those microdomains, which only occurred when CL is included in the lipid mixture, were accompanied by the formation of protein multimolecular assembly, vesicle clamping, and changes in both vesicle curvature and membrane fluidity CONCLUSION: Those results highlighted the importance of the highly abundant mtCK in the lateral organization of the mitochondrial inner membrane. GENERAL SIGNIFICANCE: Microdomains were induced in mitochondria-mimicking membranes composed of natural phospholipids without cholesterol and/or sphingolipids differing from the proposed cytoplasmic membrane rafts. Those findings as well as membrane curvature modification were discussed in relation with protein-membrane interaction and protein cluster involvement in membrane morphology.


Subject(s)
Lipid Bilayers/metabolism , Mitochondria/physiology , Mitochondrial Membranes/physiology , Phospholipids/metabolism , Animals , Cattle , Cholesterol/metabolism , Creatine Kinase, Mitochondrial Form/metabolism , Cytoplasm/metabolism , Cytoplasm/physiology , Fluorescence , Lipids/physiology , Membrane Fluidity/physiology , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Protein Binding/physiology , Rabbits , Sphingolipids/metabolism
12.
Langmuir ; 32(48): 12923-12933, 2016 12 06.
Article in English | MEDLINE | ID: mdl-27934520

ABSTRACT

Nucleoside diphosphate kinases (NDPKs) are crucial elements in a wide array of cellular physiological or pathophysiological processes such as apoptosis, proliferation, or metastasis formation. Among the NDPK isoenzymes, NDPK-B, a cytoplasmic protein, was reported to be associated with several biological membranes such as plasma or endoplasmic reticulum membranes. Using several membrane models (liposomes, lipid monolayers, and supported lipid bilayers) associated with biophysical approaches, we show that lipid membrane binding occurs in a two-step process: first, initiation by a strong electrostatic adsorption process and followed by shallow penetration of the protein within the membrane. The NDPK-B binding leads to a decrease in membrane fluidity and formation of protein patches. The ability of NDPK-B to form microdomains at the membrane level may be related to protein-protein interactions triggered by its association with anionic phospholipids. Such accumulation of NDPK-B would amplify its effects in functional platform formation and protein recruitment at the membrane.


Subject(s)
Cell Membrane/chemistry , Lipid Bilayers/chemistry , Membrane Fluidity , Humans , Nucleoside-Diphosphate Kinase/chemistry , Protein Binding
13.
Mol Membr Biol ; 32(1): 1-10, 2015.
Article in English | MEDLINE | ID: mdl-25865250

ABSTRACT

4-Hydroxy-2-nonenal (4-HNE) is a reactive aldehyde and a lipid peroxidation product formed in biological tissues under physiological and pathological conditions. Its concentration increases with oxidative stress and induces deleterious modifications of proteins and membranes. Mitochondrial and cytosolic isoforms of creatine kinase were previously shown to be affected by 4-HNE. In the present study, we analyzed the effect of 4-HNE on mitochondrial creatine kinase, an abundant protein from the mitochondrial intermembrane space with a key role in mitochondrial physiology. We show that this effect is double: 4-HNE induces a step-wise loss of creatine kinase activity together with a fast protein aggregation. Protein-membrane interaction is affected and amyloid-like networks formed on the biomimetic membrane. These fibrils may disturb mitochondrial organisation both at the membrane and in the inter membrane space.


Subject(s)
Aldehydes/pharmacology , Creatine Kinase, Mitochondrial Form/chemistry , Creatine Kinase, Mitochondrial Form/metabolism , Intracellular Membranes/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Phospholipids/metabolism , Aldehydes/chemistry , Animals , Enzyme Activation , Lipid Peroxidation , Mitochondria , Protein Binding , Protein Multimerization/drug effects , Recombinant Proteins
14.
J Liposome Res ; 25(2): 122-30, 2015.
Article in English | MEDLINE | ID: mdl-25222643

ABSTRACT

Conventional liposomes have a short life-time in blood, unless they are protected by a polymer envelope, most often polyethylene glycol. However, these stabilizing polymers frequently interfere with cellular uptake, impede liposome-membrane fusion and inhibit escape of liposome content from endosomes. To overcome such drawbacks, polymer-based systems as carriers for liposomes are currently developed. Conforming to this approach, we propose a new and convenient method for embedding small size liposomes, 30-100 nm, inside porous calcium carbonate microparticles. These microparticles served as templates for deposition of various polyelectrolytes to form a protective shell. The carbonate particles were then dissolved to yield hollow polyelectrolyte microcapsules. The main advantage of using this method for liposome encapsulation is that carbonate particles can serve as a sacrificial template for deposition of virtually any polyelectrolyte. By carefully choosing the shell composition, bioavailability of the liposomes and of the encapsulated drug can be modulated to respond to biological requirements and to improve drug delivery to the cytoplasm and avoid endosomal escape.


Subject(s)
Capsules/chemistry , Drug Carriers/chemistry , Electrolytes/chemistry , Liposomes/chemistry , Polymers/chemistry , Calcium Carbonate/chemistry , Particle Size , Porosity , Surface Properties
15.
PLoS One ; 8(2): e55250, 2013.
Article in English | MEDLINE | ID: mdl-23418437

ABSTRACT

Caspase-8 is involved in death receptor-mediated apoptosis in type II cells, the proapoptotic programme of which is triggered by truncated Bid. Indeed, caspase-8 and Bid are the known intermediates of this signalling pathway. Cardiolipin has been shown to provide an anchor and an essential activating platform for caspase-8 at the mitochondrial membrane surface. Destabilisation of this platform alters receptor-mediated apoptosis in diseases such as Barth Syndrome, which is characterised by the presence of immature cardiolipin which does not allow caspase-8 binding. We used a simplified in vitro system that mimics contact sites and/or cardiolipin-enriched microdomains at the outer mitochondrial surface in which the platform consisting of caspase-8, Bid and cardiolipin was reconstituted in giant unilamellar vesicles. We analysed these vesicles by flow cytometry and confirm previous results that demonstrate the requirement for intact mature cardiolipin for caspase-8 activation and Bid binding and cleavage. We also used confocal microscopy to visualise the rupture of the vesicles and their revesiculation at smaller sizes due to alteration of the curvature following caspase-8 and Bid binding. Biophysical approaches, including Laurdan fluorescence and rupture/tension measurements, were used to determine the ability of these three components (cardiolipin, caspase-8 and Bid) to fulfil the minimal requirements for the formation and function of the platform at the mitochondrial membrane. Our results shed light on the active functional role of cardiolipin, bridging the gap between death receptors and mitochondria.


Subject(s)
BH3 Interacting Domain Death Agonist Protein/metabolism , Cardiolipins/metabolism , Caspase 8/metabolism , Mitochondria/metabolism , Unilamellar Liposomes/metabolism , Apoptosis/physiology , Binding Sites , Humans , Mitochondrial Membranes/metabolism , Protein Binding
16.
Biochim Biophys Acta ; 1808(4): 1129-39, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21256109

ABSTRACT

It has been recently shown that mitochondrial creatine kinase (mtCK) organizes mitochondrial model membrane by modulating the state and fluidity of lipids and by promoting the formation of protein-cardiolipin clusters. This report shows, using Brewster angle microscopy, that such clustering is largely dependent on the acyl chain composition of phospholipids. Indeed, mtCK-cardiolipin domains were observed not only with unsaturated cardiolipins, but also with the cardiolipin precursor phosphatidylglycerol. On the other hand, in the case of saturated dimyristoylphosphatidylglycerol and tetramyristoylcardiolipin, mtCK was homogeneously distributed underneath the monolayer. However, an overall decrease in membrane fluidity was indicated by infrared spectroscopy as well as by extrinsic fluorescence spectroscopy using Laurdan as a fluorescent probe, both for tetramyristoylcardiolipin and bovine heart cardiolipin containing liposomes. The binding mechanism implicated the insertion of protein segments into monolayers, as evidenced from alternative current polarography, regardless of the chain unsaturation for the phosphatidylglycerols and cardiolipins tested.


Subject(s)
Cardiolipins/metabolism , Creatine Kinase, Mitochondrial Form/metabolism , Lipid Bilayers/metabolism , Mitochondrial Proteins/metabolism , Animals , Binding Sites , Cardiolipins/chemistry , Cattle , Lipid Bilayers/chemistry , Membrane Fluidity , Membrane Lipids/chemistry , Membrane Lipids/metabolism , Microscopy/methods , Phosphatidylglycerols/chemistry , Phosphatidylglycerols/metabolism , Protein Binding , Rabbits , Spectrometry, Fluorescence , Spectrophotometry, Infrared
17.
PLoS One ; 5(6): e10935, 2010 Jun 03.
Article in English | MEDLINE | ID: mdl-20543879

ABSTRACT

BACKGROUND: Oxaloacetate decarboxylase (OAD) is a member of the Na(+) transport decarboxylase enzyme family found exclusively in anaerobic bacteria. OAD of Vibrio cholerae catalyses a key step in citrate fermentation, converting the chemical energy of the decarboxylation reaction into an electrochemical gradient of Na(+) ions across the membrane, which drives endergonic membrane reactions such as ATP synthesis, transport and motility. OAD is a membrane-bound enzyme composed of alpha, beta and gamma subunits. The alpha subunit contains the carboxyltransferase catalytic site. METHODOLOGY/PRINCIPAL FINDINGS: In this report, spectroscopic techniques were used to probe oxomalonate (a competitive inhibitor of OAD with respect to oxaloacetate) and Na(+) effects on the enzyme tryptophan environment and on the secondary structure of the OAD complex, as well as the importance of each subunit in the catalytic mechanism. An intrinsic fluorescence approach, Red Edge Excitation Shift (REES), indicated that solvent molecule mobility in the vicinity of OAD tryptophans was more restricted in the presence of oxomalonate. It also demonstrated that, although the structure of OAD is sensitive to the presence of NaCl, oxomalonate was able to bind to the enzyme even in the absence of Na(+). REES changes due to oxomalonate binding were also observed with the alphagamma and alpha subunits. Infrared spectra showed that OAD, alphagamma and alpha subunits have a main component band centered between 1655 and 1650 cm(-1) characteristic of a high content of alpha helix structures. Addition of oxomalonate induced a shift of the amide-I band of OAD toward higher wavenumbers, interpreted as a slight decrease of beta sheet structures and a concomitant increase of alpha helix structures. Oxomalonate binding to alphagamma and alpha subunits also provoked secondary structure variations, but these effects were negligible compared to OAD complex. CONCLUSION: Oxomalonate binding affects the tryptophan environment of the carboxyltransferase subunit, whereas Na(+) alters the tryptophan environment of the beta subunit, consistent with the function of these subunits within the enzyme complex. Formation of a complex between OAD and its substrates elicits structural changes in the alpha-helical as well as beta-strand secondary structure elements.


Subject(s)
Carboxy-Lyases/metabolism , Malonates/metabolism , Sodium/metabolism , Spectrometry, Fluorescence/methods , Spectrophotometry, Infrared/methods , Carboxy-Lyases/chemistry , Catalysis , Electrochemistry , Models, Molecular , Protein Binding , Protein Structure, Secondary , Structure-Activity Relationship
18.
Eur Biophys J ; 39(12): 1649-55, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20361183

ABSTRACT

Mitochondrial creatine kinase (mtCK) binding to the mitochondrial inner membrane largely determines its biological functions in cellular energy homeostasis, mitochondrial physiology, and dynamics. The membrane binding mechanism is, however, not completely understood. Recent data suggest that a hydrophobic component is involved in mtCK binding to cardiolipin at the outer face of the inner mitochondrial membrane, in addition to the well known electrostatically driven process. In this manuscript, using an electrochemical method derived from alternating current polarography for differential capacity measurements, we distinctly reveal that protein-cardiolipin interaction has a two-step mechanism. For short incubation time, protein adsorption to the phospholipid charged headgroup was the only process detected, whereas on a longer time scale evidence of protein insertion was observed.


Subject(s)
Biomimetics , Cardiolipins/metabolism , Creatine Kinase, Mitochondrial Form/metabolism , Intracellular Membranes/metabolism , Membranes, Artificial , Adsorption , Binding Sites , Cardiolipins/chemistry , Creatine Kinase, Mitochondrial Form/chemistry , Electrochemistry , Intracellular Membranes/chemistry , Time Factors
19.
Biochimie ; 91(6): 752-64, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19341780

ABSTRACT

Our study highlights the tight relationship between protein binding to monolayers and the phase-state of the phospholipids. Interaction of mitochondrial creatine kinase with phospholipidic membranes was analysed using a two-phase monolayer system containing anionic phospholipids under chain mismatch conditions. Monolayers were made up of mixtures of DMPC/DPPG or DPPC/DMPG containing 40% negatively charged phospholipids which is approximately the negative charge content of the mitochondrial inner membrane. Langmuir isotherms of these monolayers showed that they underwent a phase transition from a liquid expanded state to a liquid-condensed phase at about 2 mN/m and 5 mN/m respectively. Interface morphology modifications caused by injection of mtCK under these monolayers at low or high surface pressure were monitored by Brewster angle microscopy. This work provides evidence that the presence at the air/water interface of discrete domains with increased charge density, may lead to difference in partition of soluble proteins such as mtCK, interacting with the lipid monolayer. Conversely these proteins may help to organize charged phospholipid domains in a membrane.


Subject(s)
Creatine Kinase/metabolism , Lipid Bilayers/metabolism , Mitochondria, Heart/enzymology , Mitochondrial Proteins/metabolism , Animals , Creatine Kinase/chemistry , Kinetics , Lipid Bilayers/chemistry , Membrane Lipids/chemistry , Membrane Lipids/metabolism , Microscopy/methods , Mitochondrial Proteins/chemistry , Phospholipids/chemistry , Phospholipids/metabolism , Protein Binding , Rabbits , Thermodynamics
20.
Biophys J ; 96(6): 2428-38, 2009 Mar 18.
Article in English | MEDLINE | ID: mdl-19289067

ABSTRACT

It is well established that the octameric mitochondrial form of creatine kinase (mtCK) binds to the outer face of the inner mitochondrial membrane mainly via electrostatic interactions with cardiolipin (CL). However, little is known about the consequences of these interactions on membrane and protein levels. Brewster angle microscopy investigations provide, for the first time to our knowledge, images indicating that mtCK binding induced cluster formation on CL monolayers. The thickness of the clusters (10-12 nm) corresponds to the theoretical height of the mtCK-CL complex. Protein insertion into a condensed CL film, together with monolayer stabilization after protein addition, was observed by means of differential capacity measurements. Polarization modulation infrared reflection-absorption spectroscopy showed that the mean orientation of alpha-helices within the protein shifted upon CL binding from 30 degrees to 45 degrees with respect to the interface plane, demonstrating protein domain movements. A comparison of data obtained with CL and phosphatidylcholine/phosphatidylethanolamine/CL (2:1:1) monolayers indicates that mtCK is able to selectively recruit CL molecules within the mixed monolayer, consolidating and changing the morphology of the interfacial film. Therefore, CL-rich domains induced by mtCK binding could modulate mitochondrial inner membrane morphology into a raft-like organization and influence essential steps of mitochondria-mediated apoptosis.


Subject(s)
Cardiolipins/metabolism , Creatine Kinase, Mitochondrial Form/metabolism , Membranes, Artificial , Animals , Cardiolipins/chemistry , Creatine Kinase, Mitochondrial Form/chemistry , Electrodes , Membrane Microdomains , Microscopy , Mitochondrial Membranes/metabolism , Phosphatidylcholines , Phosphatidylethanolamines , Protein Conformation , Rabbits , Spectrophotometry, Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...