Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Mater Chem A Mater ; 7(6): 2908-2918, 2019 Feb 14.
Article in English | MEDLINE | ID: mdl-30931123

ABSTRACT

Electrochromic windows and glass facades are able to impart energy efficiency jointly with indoor comfort and convenience. Long-term durability is essential for practical implementation of this technology and has recently attracted broad interest. Here we show that a simple potentiostatic pretreatment of sputter-deposited thin films of amorphous WO3-the most widely studied electrochromic material-can yield unprecedented durability for charge exchange and optical modulation under harsh electrochemical cycling in a Li-ion-conducting electrolyte and effectively evades harmful trapping of Li. The pretreatment consisted of applying a voltage of 6.0 V vs. Li/Li+ for several hours to a film backed by a transparent conducting In2O3:Sn layer. Associated compositional and structural modifications were probed by several techniques, and improved durability was associated with elemental intermixing at the WO3/ITO and ITO/glass boundaries as well as with carbonaceous solid-electrolyte interfacial layers on the WO3 films. Our work provides important new insights into long-term durability of ion-exchange-based devices.

2.
ACS Appl Mater Interfaces ; 9(49): 42420-42424, 2017 Dec 13.
Article in English | MEDLINE | ID: mdl-29164852

ABSTRACT

Nickel oxide thin films are of major importance as anodically coloring components in electrochromic smart windows with applications in energy-efficient buildings. However, the optical performance of these films degrades upon extended electrochemical cycling, which has hampered their implementation. Here, we use a potentiostatic treatment to rejuvenate degraded nickel oxide thin films immersed in electrolytes of LiClO4 in propylene carbonate. Time-of-flight elastic recoil detection analysis provided unambiguous evidence that both Li+ ions and chlorine-based ions participate in the rejuvenation process. Our work provides new perspectives for developing ion-exchange-based devices embodying nickel oxide.

3.
ACS Appl Mater Interfaces ; 9(20): 16995-17001, 2017 May 24.
Article in English | MEDLINE | ID: mdl-28485953

ABSTRACT

Electrochromic (EC) smart windows are able to decrease our energy footprint while enhancing indoor comfort and convenience. However, the limited durability of these windows, as well as their cost, result in hampered market introduction. Here, we investigate thin films of the most widely studied EC material, WO3. Specifically, we combine optical measurements (using spectrophotometry in conjunction with variable-angle spectroscopic ellipsometry) with time-of-flight secondary ion mass spectrometry and atomic force microscopy. Data were taken on films in their as-deposited state, after immersion in a Li-ion-conducting electrolyte, after severe degradation by harsh voltammetric cycling and after galvanostatic rejuvenation to regain the original EC performance. Unambiguous evidence was found for the trapping and detrapping of Li ions in the films, along with a thickness increase or decrease during degradation and rejuvenation, respectively. It was discovered that (i) the trapped ions exhibited a depth gradient; (ii) following the rejuvenation procedure, a small fraction of the Li ions remained trapped in the film and gave rise to a weak short-wavelength residual absorption; and (iii) the surface roughness of the film was larger in the degraded state than in its virgin and rejuvenated states. These data provide important insights into the degradation mechanisms of EC devices and into means of achieving improved durability.

4.
ACS Appl Mater Interfaces ; 9(14): 12872-12877, 2017 Apr 12.
Article in English | MEDLINE | ID: mdl-28328195

ABSTRACT

Degradation of electrochromic thin films under extended charge insertion and extraction is a technically important phenomenon for which no in-depth understanding is currently on hand. Here, we report on an explorative study of sputter-deposited WO3 films in a Li-ion-conducting electrolyte by use of cyclic voltammetry, in situ optical transmittance, and impedance spectroscopy. A cycling-dependent decrease of the charge capacity could be accurately modeled by a power-law function, and impedance spectroscopy gave evidence for anomalous diffusion as well as a higher charge-transfer resistance during deintercalation than during intercalation. Thus, a consistent conceptual picture emerged for the degradation dynamics; it includes the growth of an interfacial barrier layer and also embraces anomalous diffusion coupled with dispersive power-law chemical kinetics.

5.
Talanta ; 160: 9-14, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27591581

ABSTRACT

Detection of volatile organic compounds is a useful approach to non-invasive diagnosis of diseases through breath analysis. Our experimental study presents a newly developed prototype gas sensor, based on organically-functionalized gold nanoparticles, and results on formaldehyde detection using fluctuation-enhanced gas sensing. Formaldehyde was easily detected via intense fluctuations of the gas sensor's resistance, while the cross-influence of ethanol vapor (a confounding factor in exhaled breath, related to alcohol consumption) was negligible.


Subject(s)
Formaldehyde/analysis , Gold/chemistry , Metal Nanoparticles/chemistry , Breath Tests , Formaldehyde/chemistry , Photoelectron Spectroscopy
6.
ACS Appl Mater Interfaces ; 8(9): 5777-82, 2016 Mar 09.
Article in English | MEDLINE | ID: mdl-26910644

ABSTRACT

The quest for superior and low-cost electrochromic (EC) thin films, for applications in smart windows, remains strong because of their large importance for energy-efficient buildings. Although the development of new EC materials for improved devices is important, diminishing or reversing degradation is another key issue, and electrical rejuvenation of degraded EC materials can offer new opportunities. Here we demonstrate that cathodically coloring EC thin films of TiO2, which normally suffer from ion-trapping-induced degradation of charge capacity and optical modulation upon extensive electrochemical cycling, can recover their initial EC performance by a rejuvenation procedure involving Li(+) ion detrapping. Thus, the initial performance can be regained, and refreshed TiO2 films exhibit the same degradation features as as-deposited films upon prolonged electrochemical cycling. The rejuvenation was carried out by using either galvanostatic or potentiostatic treatments. Our study may open avenues to explore the recovery not only of EC materials and devices based on those but also for other ion-exchange-based devices.

7.
ACS Appl Mater Interfaces ; 7(48): 26387-90, 2015 Dec 09.
Article in English | MEDLINE | ID: mdl-26599729

ABSTRACT

Ion trapping under charge insertion-extraction is well-known to degrade the electrochemical performance of oxides. Galvanostatic treatment was recently shown capable to rejuvenate the oxide, but the detailed mechanism remained uncertain. Here we report on amorphous electrochromic (EC) WO3 thin films prepared by sputtering and electrochemically cycled in a lithium-containing electrolyte under conditions leading to severe loss of charge exchange capacity and optical modulation span. Time-of-flight elastic recoil detection analysis (ToF-ERDA) documented pronounced Li(+) trapping associated with the degradation of the EC properties and, importantly, that Li(+) detrapping, caused by a weak constant current drawn through the film for some time, could recover the original EC performance. Thus, ToF-ERDA provided direct and unambiguous evidence for Li(+) detrapping.

8.
ACS Appl Mater Interfaces ; 7(51): 28100-4, 2015 Dec 30.
Article in English | MEDLINE | ID: mdl-26562589

ABSTRACT

Devices relying on ion transport normally suffer from a decline of their long-term performance due to irreversible ion accumulation in the host material, and this effect may severely curtail the operational lifetime of the device. In this work, we demonstrate that degraded electrochromic WO3 films can sustainably regain their initial performance through galvanostatic detrapping of Li(+) ions. The rejuvenated films displayed degradation features similar to those of the as-prepared films, thus indicating that the detrapping process is effectively reversible so that long-term performance degradation can be successfully avoided. Detrapping did not occur in the absence of an electric current.

9.
Nat Mater ; 14(10): 996-1001, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26259104

ABSTRACT

There is keen interest in the use of amorphous WO3 thin films as cathodic electrodes in transmittance-modulating electrochromic devices. However, these films suffer from ion-trapping-induced degradation of optical modulation and reversibility on extended Li(+)-ion exchange. Here, we demonstrate that ion-trapping-induced degradation, which is commonly believed to be irreversible, can be successfully eliminated by constant-current-driven de-trapping; that is, WO3 films can be rejuvenated and regain their initial highly reversible electrochromic performance. Pronounced ion trapping occurs when x exceeds ∼0.65 in LixWO3 during ion insertion. We find two main kinds of Li(+)-ion-trapping site (intermediate and deep) in WO3, where the intermediate ones are most prevalent. Li(+) ions can be completely removed from intermediate traps but are irreversibly bound in deep traps. Our results provide a general framework for developing and designing superior electrochromic materials and devices.

10.
ACS Appl Mater Interfaces ; 7(18): 9319-22, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25919917

ABSTRACT

Anodically colored nickel oxide (NiO) thin films are of much interest as counter electrodes in tungsten oxide based electrochromic devices such as "smart windows" for energy-efficient buildings. However, NiO films are prone to suffering severe charge density degradation upon prolonged electrochemical cycling, which can lead to insufficient device lifetime. Therefore, a means to improve the durability of NiO-based films is an important challenge at present. Here we report that the incorporation of a modest amount of iridium into NiO films [Ir/(Ir + Ni) = 7.6 atom %] leads to remarkable durability, exceeding 10000 cycles in a lithium-conducting electrolyte, along with significantly improved optical modulation during extended cycling. Structure characterization showed that the face-centered-cubic-type NiO structure remained after iridium addition. Moreover, the crystallinity of these films was enhanced upon electrochemical cycling.

11.
Article in English | MEDLINE | ID: mdl-29732044

ABSTRACT

Noise-based logic is a practically deterministic logic scheme inspired by the randomness of neural spikes and uses a system of uncorrelated stochastic processes and their superposition to represent the logic state. We briefly discuss various questions such as (i) What does practical determinism mean? (ii) Is noise-based logic a Turing machine? (iii) Is there hope to beat (the dreams of) quantum computation by a classical physical noise-based processor, and what are the minimum hardware requirements for that? Finally, (iv) we address the problem of random number generators and show that the common belief that quantum number generators are superior to classical (thermal) noise-based generators is nothing but a myth.

12.
PLoS One ; 8(12): e81810, 2013.
Article in English | MEDLINE | ID: mdl-24358129

ABSTRACT

Recently, Bennett and Riedel (BR) (http://arxiv.org/abs/1303.7435v1) argued that thermodynamics is not essential in the Kirchhoff-law-Johnson-noise (KLJN) classical physical cryptographic exchange method in an effort to disprove the security of the KLJN scheme. They attempted to demonstrate this by introducing a dissipation-free deterministic key exchange method with two batteries and two switches. In the present paper, we first show that BR's scheme is unphysical and that some elements of its assumptions violate basic protocols of secure communication. All our analyses are based on a technically unlimited Eve with infinitely accurate and fast measurements limited only by the laws of physics and statistics. For non-ideal situations and at active (invasive) attacks, the uncertainly principle between measurement duration and statistical errors makes it impossible for Eve to extract the key regardless of the accuracy or speed of her measurements. To show that thermodynamics and noise are essential for the security, we crack the BR system with 100% success via passive attacks, in ten different ways, and demonstrate that the same cracking methods do not function for the KLJN scheme that employs Johnson noise to provide security underpinned by the Second Law of Thermodynamics. We also present a critical analysis of some other claims by BR; for example, we prove that their equations for describing zero security do not apply to the KLJN scheme. Finally we give mathematical security proofs for each BR-attack against the KLJN scheme and conclude that the information theoretic (unconditional) security of the KLJN method has not been successfully challenged.


Subject(s)
Computer Security , Research Design , Algorithms
13.
Appl Opt ; 50(19): 3296-302, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21743532

ABSTRACT

The energy conversion efficiency of a conventional pn junction solar cell decreases as the temperature increases, and this may eventually lead to failures in the photovoltaic system, especially if it uses concentrated solar radiation. In this work, we show that spectrally selective reflector (SSR) surfaces can be important for reducing the heat buildup on passively cooled solar cells. We outline a computational scheme for optimizing DC magnetron-sputtered TiO2:Nb-based SSRs tailored for silicon solar cells and find good agreement of the reflectance with an experimental realization of the optimal SSR. A figure of merit for SSRs has also been derived and applied to the experimental data.

SELECTION OF CITATIONS
SEARCH DETAIL