Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(7)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37047778

ABSTRACT

Overactive Janus kinases (JAKs) are known to drive leukemia, making them well-suited targets for treatment. We sought to identify new JAK-activating mutations and instead found a JAK1-inactivating pseudokinase mutation, V666G. In contrast to other pseudokinase mutations that canonically lead to an active kinase, the JAK1 V666G mutation led to under-activation seen by reduced phosphorylation. To understand the functional role of JAK1 V666G in modifying kinase activity we investigated its influence on other JAK kinases and within the Interleukin-2 pathway. JAK1 V666G not only inhibited its own activity, but its presence could inhibit other JAK kinases. These findings provide new insights into the potential of JAK1 pseudokinase to modulate its own activity, as well as of other JAK kinases. Thus, the features of the JAK1 V666 region in modifying JAK kinases can be exploited to allosterically inhibit overactive JAKs.


Subject(s)
Interleukin-2 , Leukemia , Humans , Phosphorylation , Interleukin-2/genetics , Interleukin-2/metabolism , Janus Kinase 1/genetics , Janus Kinase 1/metabolism , Signal Transduction , Janus Kinases/metabolism , Janus Kinase 3/genetics , Janus Kinase 3/metabolism
2.
Int J Mol Sci ; 22(22)2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34830095

ABSTRACT

Compared to other ethnicities, Hispanic children incur the highest rates of leukemia, and most cases are diagnosed as Acute Lymphoblastic Leukemia (ALL). Despite improved treatment and survival for ALL, disproportionate health outcomes in Hispanics persist. Thus, it is essential to identify oncogenic mutations within this demographic to aid in the development of new strategies to diagnose and treat ALL. Using whole-exome sequencing, five single nucleotide polymorphisms within mitogen-activated protein kinase 3 (MAP2K3) were identified in an ALL cancer patient library from the U.S./Mexico border. MAP2K3 R26T and P11T are located near the substrate-binding site, while R65L and R67W localized to the kinase domain. Truncated-MAP2K3 mutant Q73* was also identified. Transfection in HEK293 cells showed that the quadruple-MEK3 mutant (4M-MEK3) impacted protein stability, inducing degradation and reducing expression. The expression of 4M-MEK3 could be rescued by cysteine/serine protease inhibition, and proteasomal degradation of truncated-MEK3 occurred in a ubiquitin-independent manner. MEK3 mutants displayed reduced auto-phosphorylation and enzymatic activity, as seen by decreases in p38 phosphorylation. Furthermore, uncoupling of the MEK3/p38 signaling pathway resulted in less suppressive activity on HEK293 cell viability. Thus, disruption of MEK3 activation may promote proliferative signals in ALL. These findings suggest that MEK3 represents a potential therapeutic target for treating ALL.


Subject(s)
Cell Proliferation/genetics , MAP Kinase Kinase 3 , MAP Kinase Signaling System/genetics , Mutation , Neoplasm Proteins , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Proteolysis , HEK293 Cells , Hep G2 Cells , Humans , MAP Kinase Kinase 3/genetics , MAP Kinase Kinase 3/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/enzymology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
3.
Sci Rep ; 11(1): 16951, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34417497

ABSTRACT

T-cell activation and cellular expansion by common gamma chain cytokines such as Interleukin-2 is necessary for adaptive immunity. However, when unregulated these same pathways promote pathologies ranging from autoimmune disorders to cancer. While the functional role of Interleukin-2 and downstream effector molecules is relatively clear, the repertoire of phosphoregulatory proteins downstream of this pathway is incomplete. To identify phosphoproteins downstream of common gamma chain receptor, YT cells were radiolabeled with [32P]-orthophosphate and stimulated with Interleukin-2. Subsequently, tyrosine phosphorylated proteins were immunopurified and subjected to tandem mass spectrometry-leading to the identification of CrkL. Phosphoamino acid analysis revealed concurrent serine phosphorylation of CrkL and was later identified as S114 by mass spectrometry analysis. S114 was inducible through stimulation with Interleukin-2 or T-cell receptor stimulation. Polyclonal antibodies were generated against CrkL phospho-S114, and used to show its inducibility by multiple stimuli. These findings confirm CrkL as an Interleukin-2 responsive protein that becomes phosphorylated at S114 by a kinase/s downstream of PI3K and MEK/ERK signaling.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cytokines/metabolism , Interleukin Receptor Common gamma Subunit/metabolism , Interleukin-2/metabolism , Phosphoserine/metabolism , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , Adaptor Proteins, Signal Transducing/chemistry , Amino Acid Sequence , Antibodies/metabolism , Cell Line , Humans , MAP Kinase Signaling System , Peptides/chemistry , Peptides/metabolism , Phosphorylation , Phosphotyrosine/metabolism , Protein Processing, Post-Translational , TOR Serine-Threonine Kinases/metabolism
4.
Front Immunol ; 12: 690477, 2021.
Article in English | MEDLINE | ID: mdl-34326843

ABSTRACT

The positive-sense single stranded RNA virus, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), resulted in a global pandemic with horrendous health and economic consequences not seen in a century. At a finer scale, immunologically, many of these devastating effects by SARS-CoV-2 can be traced to a "cytokine storm" resulting in the simultaneous activation of Janus Kinases (JAKs) and Signal Transducers and Activators of Transcription (STAT) proteins downstream of the many cytokine receptor families triggered by elevated cytokines found in Coronavirus Disease 2019 (COVID-19). In this report, cytokines found in the storm are discussed in relation to the JAK-STAT pathway in response to SARS-CoV-2 and the lessons learned from RNA viruses and previous Coronaviruses (CoVs). Therapeutic strategies to counteract the SARS-CoV-2 mediated storm are discussed with an emphasis on cell signaling and JAK inhibition.


Subject(s)
COVID-19/immunology , Cytokine Release Syndrome/immunology , SARS-CoV-2/physiology , Animals , Cytokines/metabolism , Humans , Janus Kinases/metabolism , STAT Transcription Factors/metabolism , Signal Transduction
5.
J Neurosci Methods ; 346: 108894, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32771372

ABSTRACT

BACKGROUND: Electrical Stimulation is a traditional tool in neuroscience and is commonly used in vivo to evoke behavior and in vitro to study neural mechanisms. In vivo intracerebral microdialysis, also a traditional technique, is used to assay neurotransmitter release. However, the combination of these techniques is highly limited to studies using anesthetized animals; therefore, evoking and measuring exocytotic neurotransmitter release in awake models is lacking. Combining these techniques in an awake animal preparation is presented here with evidence to support the mechanistic action of electrical stimulation in vivo. NEW METHODS: This report presents converging evidence to validate the combination of intracerebral electrical stimulation with microdialysis as a novel procedure to study exocytotic-like dopamine release in behaving animals. RESULTS: It is shown that electrical stimulation of the medial forebrain bundle can be used to evoke frequency- and intensity-dependent exocytotic-like dopamine overflow and rotational behavior that are sensitive to Na+ channel blockade and Ca++ availability. COMPARISON WITH EXISTING METHODS: Studies using modern techniques to evoke neurotransmitter release, combined with in vivo intracerebral microdialysis, and measured behavioral output are scarce. In contrast, commonly used pharmacological methods often are less precise and inefficient to evoke exocytotic dopamine release and behavior. Here we demonstrate, the combination of in vivo intracerebral microdialysis with electrical stimulation as a simple approach to simultaneously assess physiologically relevant neurotransmitter 'release' and behavior. CONCLUSIONS: Research that aims to understand how dopamine neurotransmission is altered in behavioral disorders can utilize this innovative combination of electrical stimulation with in vivo intracerebral microdialysis.


Subject(s)
Dopamine , Exocytosis , Animals , Electric Stimulation , Microdialysis , Neurotransmitter Agents
6.
J Pharmacol Exp Ther ; 374(1): 6-15, 2020 07.
Article in English | MEDLINE | ID: mdl-32265322

ABSTRACT

Rats eating high fat chow are more sensitive to the behavioral effects of dopaminergic drugs, including methamphetamine and the dopamine D2/D3 receptor agonist quinpirole, than rats eating standard chow. However, limited work has explored possible sex differences regarding the impact of diet on drug sensitivity. It is also unknown whether eating high fat chow enhances sensitivity of rats to other dopamine (e.g., D1) receptor agonists. To explore these possibilities, male and female Sprague-Dawley rats eating standard laboratory chow (17% kcal from fat) or high fat chow (60% kcal from fat) were tested once per week for 6 weeks with dopamine D1 receptor agonist SKF 82958 (0.01-3.2 mg/kg) or methamphetamine (0.1-3.2 mg/kg) using cumulative dosing procedures. Eating high fat chow increased sensitivity of male and female rats to methamphetamine-induced locomotion; however, only female rats eating high fat chow were more sensitive to SKF 82958-induced locomotion. SKF 82958-induced eye blinking was also marginally, although not significantly, enhanced among female rats eating high fat chow, but not males. Further, although dopamine D2 receptor expression was significantly increased for SKF 82958-treated rats eating high fat chow regardless of sex, no differences were observed in dopamine D1 receptor expression. Taken together, the present study suggests that although eating high fat chow enhances sensitivity of both sexes to dopaminergic drugs, the mechanism driving this effect might be different for males versus females. These data further demonstrate the importance of studying both sexes simultaneously when investigating factors that influence drug sensitivity. SIGNIFICANCE STATEMENT: Although it is known that diet can impact sensitivity to some dopaminergic drugs, sex differences regarding this effect are not well characterized. This report demonstrates that eating a high fat diet enhances sensitivity to methamphetamine, regardless of sex; however, sensitivity to dopamine D1 receptor agonist SKF 82958 is increased only among females eating high fat chow, but not males. This suggests that the mechanism(s) driving diet-induced changes in drug sensitivity might be different between sexes.


Subject(s)
Benzazepines/pharmacology , Diet, High-Fat/adverse effects , Methamphetamine/pharmacology , Receptors, Dopamine D1/agonists , Animals , Blinking/drug effects , Drug Interactions , Female , Gene Expression Regulation/drug effects , Locomotion/drug effects , Male , Rats , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/metabolism
7.
Adv Neurobiol ; 21: 101-193, 2018.
Article in English | MEDLINE | ID: mdl-30334222

ABSTRACT

This article focuses on approaches to link transcriptomic, proteomic, and peptidomic datasets mined from brain tissue to the original locations within the brain that they are derived from using digital atlas mapping techniques. We use, as an example, the transcriptomic, proteomic and peptidomic analyses conducted in the mammalian hypothalamus. Following a brief historical overview, we highlight studies that have mined biochemical and molecular information from the hypothalamus and then lay out a strategy for how these data can be linked spatially to the mapped locations in a canonical brain atlas where the data come from, thereby allowing researchers to integrate these data with other datasets across multiple scales. A key methodology that enables atlas-based mapping of extracted datasets-laser-capture microdissection-is discussed in detail, with a view of how this technology is a bridge between systems biology and systems neuroscience.


Subject(s)
Hypothalamus , Memory , Proteomics , Refugees , Animals , Brain , Humans , Hypothalamus/metabolism , Memory/physiology , Refugees/psychology , Systems Biology
SELECTION OF CITATIONS
SEARCH DETAIL
...