Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Oncol ; 18(6): 1631-1648, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38572507

ABSTRACT

Dopamine (DA) acts in various key neurological and physiological processes as both a neurotransmitter and circulating hormone. Over the past several decades, the DA signaling network has been shown to regulate the progression of several types of solid tumors, and considerable evidence has shown it is a druggable pathway in the cancer cell context. However, the specific activity and effect of these pathway components appears to be tissue-type and cell-context-dependent. In the present study, expression and methylation of dopamine receptor D1 (DRD1) were measured using RNA sequencing (RNAseq) and reverse transcription polymerase chain reaction (RT-PCR) in non-small cell lung cancer (NSCLC) samples, and validated using publicly available datasets, including The Cancer Genome Atlas (TCGA). In vitro and in vivo functional experiments were performed for cell proliferation and tumor growth, respectively. Mechanistic analyses of the transcriptome and kinome in DRD1-modulated cells informed further experiments, which characterized the effects on the epidermal growth factor receptor (EGFR) pathway and programmed cell death 1 ligand 1 (PD-L1) proteins. Through these experiments, we identified the DRD1 gene as a negative regulator of disease progression in NSCLC. We show that DRD1, as well as other DA pathway components, are expressed in normal human lung tissue, and that loss of DRD1 expression through promoter hypermethylation is a common feature in NSCLC patients and is associated with worse survival. At the cellular level, DRD1 affects proliferation by inhibiting the activation of EGFR and mitogen-activated protein kinase 1/2 (ERK1/2). Interestingly, we also found that DRD1 regulates the expression of PD-L1 in lung cancer cells. Taken together, these results suggest that DRD1 methylation may constitute a biomarker of poor prognosis in NSCLC patients while other components of this pathway could be targeted to improve response to EGFR- and PD-L1-targeted therapies.


Subject(s)
B7-H1 Antigen , Carcinoma, Non-Small-Cell Lung , Cell Proliferation , ErbB Receptors , Gene Expression Regulation, Neoplastic , Lung Neoplasms , Receptors, Dopamine D1 , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Humans , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Cell Proliferation/genetics , ErbB Receptors/metabolism , ErbB Receptors/genetics , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D1/genetics , Cell Line, Tumor , Animals , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Mice , DNA Methylation/genetics , Mice, Nude , Female , Signal Transduction/genetics
2.
Carcinogenesis ; 43(6): 517-527, 2022 06 27.
Article in English | MEDLINE | ID: mdl-35616105

ABSTRACT

Dopamine (DA, 3-hydroxytyramine) is a member of the catecholamine family and is classically characterized according to its role in the central nervous system as a neurotransmitter. In recent decades, many novel and intriguing discoveries have been made about the peripheral expression of DA receptors (DRs) and the role of DA signaling in both normal and pathological processes. Drawing from decades of evidence suggesting a link between DA and cancer, the DA pathway has recently emerged as a potential target in antitumor therapies. Due to the onerous, expensive and frequently unsuccessful nature of drug development, the repurposing of dopaminergic drugs for cancer therapy has the potential to greatly benefit patients and drug developers alike. However, the lack of clear mechanistic data supporting the direct involvement of DRs and their downstream signaling components in cancer represents an ongoing challenge that has limited the translation of these drugs to the clinic. Despite this, the breadth of evidence linking DA to cancer and non-tumor cells in the tumor microenvironment justifies further inquiry into the potential applications of this treatment modality in cancer. Herein, we review the literature characterizing the interplay between the DA signaling axis and cancer, highlighting key findings, and then propose rational lines of investigation to follow.


Subject(s)
Dopamine , Neoplasms , Dopamine/metabolism , Humans , Neoplasms/drug therapy , Tumor Microenvironment
3.
G3 (Bethesda) ; 7(3): 1011-1018, 2017 03 10.
Article in English | MEDLINE | ID: mdl-28143946

ABSTRACT

The heat shock response (HSR) is a cellular stress response that senses protein misfolding and restores protein folding homeostasis, or proteostasis. We previously identified an HSR regulatory network in Caenorhabditis elegans consisting of highly conserved genes that have important cellular roles in maintaining proteostasis. Unexpectedly, the effects of these genes on the HSR are distinctly tissue-specific. Here, we explore this apparent discrepancy and find that muscle-specific regulation of the HSR by the TRiC/CCT chaperonin is not driven by an enrichment of TRiC/CCT in muscle, but rather by the levels of one of its most abundant substrates, actin. Knockdown of actin subunits reduces induction of the HSR in muscle upon TRiC/CCT knockdown; conversely, overexpression of an actin subunit sensitizes the intestine so that it induces the HSR upon TRiC/CCT knockdown. Similarly, intestine-specific HSR regulation by the signal recognition particle (SRP), a component of the secretory pathway, is driven by the vitellogenins, some of the most abundant secretory proteins. Together, these data indicate that the specific protein folding requirements from the unique cellular proteomes sensitizes each tissue to disruption of distinct subsets of the proteostasis network. These findings are relevant for tissue-specific, HSR-associated human diseases such as cancer and neurodegenerative diseases. Additionally, we characterize organismal phenotypes of actin overexpression including a shortened lifespan, supporting a recent hypothesis that maintenance of the actin cytoskeleton is an important factor for longevity.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Heat-Shock Response , Organ Specificity , Proteome/metabolism , Actins/metabolism , Animals , Gene Expression Regulation , Gene Knockdown Techniques , Intestinal Mucosa/metabolism , Models, Biological , Muscles/metabolism , Organ Specificity/genetics , Phenotype , Protein Subunits/metabolism , Vitellogenins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...