Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Geroscience ; 46(1): 39-56, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37597113

ABSTRACT

DNA methylation (DNAm)-based age clocks have been studied extensively as a biomarker of human ageing and a risk factor for age-related diseases. Despite different tissues having vastly different rates of proliferation, it is still largely unknown whether they age at different rates. It was previously reported that the cerebellum ages slowly; however, this claim was drawn from a single clock using a relatively small sample size and so warrants further investigation. We collected the largest cerebellum DNAm dataset (N = 752) to date. We found the respective epigenetic ages are all severely underestimated by six representative DNAm age clocks, with the underestimation effects more pronounced in the four clocks whose training datasets do not include brain-related tissues. We identified 613 age-associated CpGs in the cerebellum, which accounts for only 14.5% of the number found in the middle temporal gyrus from the same population (N = 404). From the 613 cerebellum age-associated CpGs, we built a highly accurate age prediction model for the cerebellum named CerebellumClockspecific (Pearson correlation=0.941, MAD=3.18 years). Ageing rate comparisons based on the two tissue-specific clocks constructed on the 201 overlapping age-associated CpGs support the cerebellum has younger DNAm age. Nevertheless, we built BrainCortexClock to prove a single DNAm clock is able to unbiasedly estimate DNAm ages of both cerebellum and cerebral cortex, when they are adequately and equally represented in the training dataset. Comparing ageing rates across tissues using DNA methylation multi-tissue clocks is flawed. The large underestimation of age prediction for cerebellums by previous clocks mainly reflects the improper usage of these age clocks. There exist strong and consistent ageing effects on the cerebellar methylome, and we suggest the smaller number of age-associated CpG sites in cerebellum is largely attributed to its extremely low average cell replication rates.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Humans , Aging/genetics , Epigenome , Epigenomics
2.
Nat Struct Mol Biol ; 30(7): 935-947, 2023 07.
Article in English | MEDLINE | ID: mdl-37308596

ABSTRACT

Mammalian genomes harbor abundant transposable elements (TEs) and their remnants, with numerous epigenetic repression mechanisms enacted to silence TE transcription. However, TEs are upregulated during early development, neuronal lineage, and cancers, although the epigenetic factors contributing to the transcription of TEs have yet to be fully elucidated. Here, we demonstrate that the male-specific lethal (MSL)-complex-mediated histone H4 acetylation at lysine 16 (H4K16ac) is enriched at TEs in human embryonic stem cells (hESCs) and cancer cells. This in turn activates transcription of subsets of full-length long interspersed nuclear elements (LINE1s, L1s) and endogenous retrovirus (ERV) long terminal repeats (LTRs). Furthermore, we show that the H4K16ac-marked L1 and LTR subfamilies display enhancer-like functions and are enriched in genomic locations with chromatin features associated with active enhancers. Importantly, such regions often reside at boundaries of topologically associated domains and loop with genes. CRISPR-based epigenetic perturbation and genetic deletion of L1s reveal that H4K16ac-marked L1s and LTRs regulate the expression of genes in cis. Overall, TEs enriched with H4K16ac contribute to the cis-regulatory landscape at specific genomic locations by maintaining an active chromatin landscape at TEs.


Subject(s)
DNA Transposable Elements , Endogenous Retroviruses , Animals , Humans , Male , DNA Transposable Elements/genetics , Chromatin/genetics , Regulatory Sequences, Nucleic Acid/genetics , Endogenous Retroviruses/genetics , Genomics , Mammals/genetics
3.
Bioinformatics ; 38(16): 3950-3957, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35771651

ABSTRACT

MOTIVATION: Data normalization is an essential step to reduce technical variation within and between arrays. Due to the different karyotypes and the effects of X chromosome inactivation, females and males exhibit distinct methylation patterns on sex chromosomes; thus, it poses a significant challenge to normalize sex chromosome data without introducing bias. Currently, existing methods do not provide unbiased solutions to normalize sex chromosome data, usually, they just process autosomal and sex chromosomes indiscriminately. RESULTS: Here, we demonstrate that ignoring this sex difference will lead to introducing artificial sex bias, especially for thousands of autosomal CpGs. We present a novel two-step strategy (interpolatedXY) to address this issue, which is applicable to all quantile-based normalization methods. By this new strategy, the autosomal CpGs are first normalized independently by conventional methods, such as funnorm or dasen; then the corrected methylation values of sex chromosome-linked CpGs are estimated as the weighted average of their nearest neighbors on autosomes. The proposed two-step strategy can also be applied to other non-quantile-based normalization methods, as well as other array-based data types. Moreover, we propose a useful concept: the sex explained fraction of variance, to quantitatively measure the normalization effect. AVAILABILITY AND IMPLEMENTATION: The proposed methods are available by calling the function 'adjustedDasen' or 'adjustedFunnorm' in the latest wateRmelon package (https://github.com/schalkwyk/wateRmelon), with methods compatible with all the major workflows, including minfi. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
DNA Methylation , Sexism , Female , Male , Humans , Oligonucleotide Array Sequence Analysis/methods , Protein Processing, Post-Translational
4.
Clin Epigenetics ; 14(1): 62, 2022 05 14.
Article in English | MEDLINE | ID: mdl-35568878

ABSTRACT

BACKGROUND: Sex differences are known to play a role in disease aetiology, progression and outcome. Previous studies have revealed autosomal epigenetic differences between males and females in some tissues, including differences in DNA methylation patterns. Here, we report for the first time an analysis of autosomal sex differences in DNAme using the Illumina EPIC array in human whole blood by performing a discovery (n = 1171) and validation (n = 2471) analysis. RESULTS: We identified and validated 396 sex-associated differentially methylated CpG sites (saDMPs) with the majority found to be female-biased CpGs (74%). These saDMP's are enriched in CpG islands and CpG shores and located preferentially at 5'UTRs, 3'UTRs and enhancers. Additionally, we identified 266 significant sex-associated differentially methylated regions overlapping genes, which have previously been shown to exhibit epigenetic sex differences, and novel genes. Transcription factor binding site enrichment revealed enrichment of transcription factors related to critical developmental processes and sex determination such as SRY and ESR1. CONCLUSION: Our study reports a reliable catalogue of sex-associated CpG sites and elucidates several characteristics of these sites using large-scale discovery and validation data sets. This resource will benefit future studies aiming to investigate sex specific epigenetic signatures and further our understanding of the role of DNA methylation in sex differences in human whole blood.


Subject(s)
DNA Methylation , Sex Characteristics , CpG Islands , Epigenesis, Genetic , Epigenomics , Female , Humans , Male
5.
Nucleic Acids Res ; 50(6): e33, 2022 04 08.
Article in English | MEDLINE | ID: mdl-34908129

ABSTRACT

Despite a vast expansion in the availability of epigenomic data, our knowledge of the chromatin landscape at interspersed repeats remains highly limited by difficulties in mapping short-read sequencing data to these regions. In particular, little is known about the locus-specific regulation of evolutionarily young transposable elements (TEs), which have been implicated in genome stability, gene regulation and innate immunity in a variety of developmental and disease contexts. Here we propose an approach for generating locus-specific protein-DNA binding profiles at interspersed repeats, which leverages information on the spatial proximity between repetitive and non-repetitive genomic regions. We demonstrate that the combination of HiChIP and a newly developed mapping tool (PAtChER) yields accurate protein enrichment profiles at individual repetitive loci. Using this approach, we reveal previously unappreciated variation in the epigenetic profiles of young TE loci in mouse and human cells. Insights gained using our method will be invaluable for dissecting the molecular determinants of TE regulation and their impact on the genome.


Subject(s)
Chromatin , DNA Transposable Elements , Animals , Chromatin/genetics , DNA Transposable Elements/genetics , Gene Expression Regulation , Genomics , Humans , Mice
6.
BMC Genomics ; 22(1): 484, 2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34182928

ABSTRACT

BACKGROUND: Sex is an important covariate of epigenome-wide association studies due to its strong influence on DNA methylation patterns across numerous genomic positions. Nevertheless, many samples on the Gene Expression Omnibus (GEO) frequently lack a sex annotation or are incorrectly labelled. Considering the influence that sex imposes on DNA methylation patterns, it is necessary to ensure that methods for filtering poor samples and checking of sex assignment are accurate and widely applicable. RESULTS: Here we presented a novel method to predict sex using only DNA methylation beta values, which can be readily applied to almost all DNA methylation datasets of different formats (raw IDATs or text files with only signal intensities) uploaded to GEO. We identified 4345 significantly (p<0.01) sex-associated CpG sites present on both 450K and EPIC arrays, and constructed a sex classifier based on the two first principal components of the DNA methylation data of sex-associated probes mapped on sex chromosomes. The proposed method is constructed using whole blood samples and exhibits good performance across a wide range of tissues. We further demonstrated that our method can be used to identify samples with sex chromosome aneuploidy, this function is validated by five Turner syndrome cases and one Klinefelter syndrome case. CONCLUSIONS: This proposed sex classifier not only can be used for sex predictions but also applied to identify samples with sex chromosome aneuploidy, and it is freely and easily accessible by calling the 'estimateSex' function from the newest wateRmelon Bioconductor package ( https://github.com/schalkwyk/wateRmelon ).


Subject(s)
DNA Methylation , Genomics , Aneuploidy , CpG Islands , Humans , Sex Chromosomes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...