Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Cell ; 33(6): ar54, 2022 05 15.
Article in English | MEDLINE | ID: mdl-34910584

ABSTRACT

Patient stem cell-derived models enable imaging of complex disease phenotypes and the development of scalable drug discovery platforms. Current preclinical methods for assessing cellular activity do not, however, capture the full intricacies of disease-induced disturbances and instead typically focus on a single parameter, which impairs both the understanding of disease and the discovery of effective therapeutics. Here, we describe a cloud-based image processing and analysis platform that captures the intricate activity profile revealed by GCaMP fluorescence recordings of intracellular calcium changes and enables the discovery of molecules that correct 153 parameters that define the amyotrophic lateral sclerosis motor neuron disease phenotype. In a high-throughput screen, we identified compounds that revert the multiparametric disease profile to that found in healthy cells, a novel and robust measure of therapeutic potential quite distinct from unidimensional screening. This platform can guide the development of therapeutics that counteract the multifaceted pathological features of diseased cellular activity.


Subject(s)
Amyotrophic Lateral Sclerosis , Drug Discovery , Amyotrophic Lateral Sclerosis/genetics , Drug Discovery/methods , Drug Evaluation, Preclinical , Humans , Neurons , Phenotype
2.
Cell Rep ; 36(10): 109666, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34496254

ABSTRACT

Although axonal damage induces rapid changes in gene expression in primary sensory neurons, it remains unclear how this process is initiated. The transcription factor ATF3, one of the earliest genes responding to nerve injury, regulates expression of downstream genes that enable axon regeneration. By exploiting ATF3 reporter systems, we identify topoisomerase inhibitors as ATF3 inducers, including camptothecin. Camptothecin increases ATF3 expression and promotes neurite outgrowth in sensory neurons in vitro and enhances axonal regeneration after sciatic nerve crush in vivo. Given the action of topoisomerases in producing DNA breaks, we determine that they do occur immediately after nerve damage at the ATF3 gene locus in injured sensory neurons and are further increased after camptothecin exposure. Formation of DNA breaks in injured sensory neurons and enhancement of it pharmacologically may contribute to the initiation of those transcriptional changes required for peripheral nerve regeneration.


Subject(s)
Activating Transcription Factor 3/metabolism , Axons/metabolism , DNA Breaks/drug effects , DNA Topoisomerases, Type I/metabolism , Peripheral Nerve Injuries/metabolism , Sensory Receptor Cells/metabolism , Animals , DNA Topoisomerases, Type I/drug effects , Gene Expression/physiology , Mice, Inbred C57BL , Nerve Regeneration/drug effects , Nerve Regeneration/physiology , Neuronal Outgrowth/physiology , Sciatic Nerve/metabolism
3.
Cell Rep ; 35(10): 109224, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34107252

ABSTRACT

Drug development is hampered by poor target selection. Phenotypic screens using neurons differentiated from patient stem cells offer the possibility to validate known and discover novel disease targets in an unbiased fashion. To identify targets for managing hyperexcitability, a pathological feature of amyotrophic lateral sclerosis (ALS), we design a multi-step screening funnel using patient-derived motor neurons. High-content live cell imaging is used to evaluate neuronal excitability, and from a screen against a chemogenomic library of 2,899 target-annotated compounds, 67 reduce the hyperexcitability of ALS motor neurons carrying the SOD1(A4V) mutation, without cytotoxicity. Bioinformatic deconvolution identifies 13 targets that modulate motor neuron excitability, including two known ALS excitability modulators, AMPA receptors and Kv7.2/3 ion channels, constituting target validation. We also identify D2 dopamine receptors as modulators of ALS motor neuron excitability. This screen demonstrates the power of human disease cell-based phenotypic screens for identifying clinically relevant targets for neurological disorders.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Cell Differentiation , Humans , Phenotype
4.
Cancer Immunol Res ; 9(1): 34-49, 2021 01.
Article in English | MEDLINE | ID: mdl-33177106

ABSTRACT

CD3-bispecific antibodies represent an important therapeutic strategy in oncology. These molecules work by redirecting cytotoxic T cells to antigen-bearing tumor cells. Although CD3-bispecific antibodies have been developed for several clinical indications, cases of cancer-derived resistance are an emerging limitation to the more generalized application of these molecules. Here, we devised whole-genome CRISPR screens to identify cancer resistance mechanisms to CD3-bispecific antibodies across multiple targets and cancer types. By validating the screen hits, we found that deficiency in IFNγ signaling has a prominent role in cancer resistance. IFNγ functioned by stimulating the expression of T-cell killing-related molecules in a cell type-specific manner. By assessing resistance to the clinical CD3-bispecific antibody flotetuzumab, we identified core fucosylation as a critical pathway to regulate flotetuzumab binding to the CD123 antigen. Disruption of this pathway resulted in significant resistance to flotetuzumab treatment. Proper fucosylation of CD123 was required for its normal biological functions. In order to treat the resistance associated with fucosylation loss, flotetuzumab in combination with an alternative targeting CD3-bispecific antibody demonstrated superior efficacy. Together, our study reveals multiple mechanisms that can be targeted to enhance the clinical potential of current and future T-cell-engaging CD3-bispecific antibody therapies.


Subject(s)
Antibodies, Bispecific/pharmacology , Antineoplastic Agents/pharmacology , CD3 Complex/immunology , T-Lymphocytes, Cytotoxic/drug effects , Animals , Cell Line, Tumor , Clustered Regularly Interspaced Short Palindromic Repeats , Humans , Immunotherapy , Interferon-gamma/pharmacology , Interleukin-3 Receptor alpha Subunit/immunology , Lymphocyte Activation , Mice , Mice, Inbred NOD , T-Lymphocytes, Cytotoxic/immunology
5.
Cell Rep ; 20(1): 89-98, 2017 07 05.
Article in English | MEDLINE | ID: mdl-28683326

ABSTRACT

Potentially harmful stimuli are detected at the skin by nociceptor sensory neurons that drive rapid protective withdrawal reflexes and pain. We set out to define, at a millisecond timescale, the relationship between the activity of these sensory neurons and the resultant behavioral output. Brief optogenetic activation of cutaneous nociceptors was found to activate only a single action potential in each fiber. This minimal input was used to determine high-speed behavioral responses in freely behaving mice. The localized stimulus generated widespread dynamic repositioning and alerting sub-second behaviors whose nature and timing depended on the context of the animal and its position, activity, and alertness. Our findings show that the primary response to injurious stimuli is not limited, fixed, or localized, but is dynamic, and that it involves recruitment and gating of multiple circuits distributed throughout the central nervous system at a sub-second timescale to effectively both alert to the presence of danger and minimize risk of harm.


Subject(s)
Nociceptive Pain/physiopathology , Nociceptors/physiology , Pain Perception , Reaction Time , Animals , Female , Male , Mice , Mice, Inbred C57BL , Reflex , Sensory Gating , Skin/innervation
SELECTION OF CITATIONS
SEARCH DETAIL
...