Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters











Publication year range
1.
Circ Genom Precis Med ; 17(1): e004355, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38288598

ABSTRACT

RBM20 (RNA-binding motif protein 20) is a vertebrate- and muscle-specific RNA-binding protein that belongs to the serine-arginine-rich family of splicing factors. The RBM20 gene was first identified as a dilated cardiomyopathy-linked gene over a decade ago. Early studies in Rbm20 knockout rodents implicated disrupted splicing of RBM20 target genes as a causative mechanism. Clinical studies show that pathogenic variants in RBM20 are linked to aggressive dilated cardiomyopathy with early onset heart failure and high mortality. Subsequent studies employing pathogenic variant knock-in animal models revealed that variants in a specific portion of the arginine-serine-rich domain in RBM20 not only disrupt splicing but also hinder nucleocytoplasmic transport and lead to the formation of RBM20 biomolecular condensates in the sarcoplasm. Conversely, mice harboring a disease-associated variant in the RRM (RNA recognition motif) do not show evidence of adverse remodeling or exhibit sudden death despite disrupted splicing of RBM20 target genes. Thus, whether disrupted splicing, biomolecular condensates, or both contribute to dilated cardiomyopathy is under debate. Beyond this, additional questions remain, such as whether there is sexual dimorphism in the presentation of RBM20 cardiomyopathy. What are the clinical features of RBM20 cardiomyopathy and why do some individuals develop more severe disease than others? In this review, we summarize the reported observations and discuss potential mechanisms of RBM20 cardiomyopathy derived from studies employing in vivo animal models and in vitro human-induced pluripotent stem cell-derived cardiomyocytes. Potential therapeutic strategies to treat RBM20 cardiomyopathy are also discussed.


Subject(s)
Cardiomyopathies , Cardiomyopathy, Dilated , Humans , Mice , Animals , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , Cardiomyopathies/metabolism , Myocytes, Cardiac/metabolism , Arginine/metabolism , Serine/metabolism , RNA-Binding Proteins/genetics
2.
Proc Natl Acad Sci U S A ; 120(51): e2314920120, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38091294

ABSTRACT

Mutations in atrial-enriched genes can cause a primary atrial myopathy that can contribute to overall cardiovascular dysfunction. MYBPHL encodes myosin-binding protein H-like (MyBP-HL), an atrial sarcomere protein that shares domain homology with the carboxy-terminus of cardiac myosin-binding protein-C (cMyBP-C). The function of MyBP-HL and the relationship between MyBP-HL and cMyBP-C is unknown. To decipher the roles of MyBP-HL, we used structured illumination microscopy, immuno-electron microscopy, and mass spectrometry to establish the localization and stoichiometry of MyBP-HL. We found levels of cMyBP-C, a major regulator of myosin function, were half as abundant compared to levels in the ventricle. In genetic mouse models, loss of MyBP-HL doubled cMyBP-C abundance in the atria, and loss of cMyBP-C doubled MyBP-HL abundance in the atria. Structured illumination microscopy showed that both proteins colocalize in the C-zone of the A-band, with MyBP-HL enriched closer to the M-line. Immuno-electron microscopy of mouse atria showed MyBP-HL strongly localized 161 nm from the M-line, consistent with localization to the third 43 nm repeat of myosin heads. Both cMyBP-C and MyBP-HL had less-defined sarcomere localization in the atria compared to ventricle, yet areas with the expected 43 nm repeat distance were observed for both proteins. Isometric force measurements taken from control and Mybphl null single atrial myofibrils revealed that loss of Mybphl accelerated the linear phase of relaxation. These findings support a mechanism where MyBP-HL regulates cMyBP-C abundance to alter the kinetics of sarcomere relaxation in atrial sarcomeres.


Subject(s)
Carrier Proteins , Myocytes, Cardiac , Mice , Animals , Myocytes, Cardiac/metabolism , Carrier Proteins/metabolism , Protein Binding/genetics , Sarcomeres/metabolism , Myosins/genetics , Myosins/metabolism , Myocardium/metabolism
3.
Int J Mol Sci ; 23(24)2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36555335

ABSTRACT

Diaphragm weakness frequently develops in mechanically ventilated critically ill patients and is associated with increased morbidity, including ventilator weaning failure, mortality, and health care costs. The mechanisms underlying diaphragm weakness are incompletely understood but may include the elastic properties of titin, a giant protein whose layout in the muscle's sarcomeres makes it an ideal candidate to sense ventilation-induced diaphragm unloading, resulting in downstream signaling through titin-binding proteins. In the current study, we investigated whether modulating titin stiffness affects the development of diaphragm weakness during mechanical ventilation. To this end, we ventilated genetically engineered mice with reduced titin stiffness (Rbm20ΔRRM), and robust (TtnΔIAjxn) or severely (TtnΔ112-158) increased titin stiffness for 8 h, and assessed diaphragm contractility and protein expression of titin-binding proteins. Mechanical ventilation reduced the maximum active tension of the diaphragm in WT, TtnΔIAjxn and TtnΔ112-158 mice. However, in Rbm20ΔRRM mice maximum active tension was preserved after ventilation. Analyses of titin binding proteins suggest that muscle ankyrin repeat proteins (MARPs) 1 and 2 may play a role in the adaptation of the diaphragm to mechanical ventilation, and the preservation of diaphragm contractility in Rbm20ΔRRM mice. Thus, Rbm20ΔRRM mice, expressing titin isoforms with lower stiffness, are protected from mechanical ventilation-induced diaphragm weakness, suggesting that titin elasticity may modulate the diaphragm's response to unloading during mechanical ventilation.


Subject(s)
Respiration Disorders , Respiration, Artificial , Mice , Animals , Connectin/metabolism , Respiration, Artificial/adverse effects , Diaphragm/metabolism , Muscle Weakness/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Kinases/metabolism , RNA-Binding Proteins
4.
J Clin Invest ; 132(10)2022 05 16.
Article in English | MEDLINE | ID: mdl-35575093

ABSTRACT

Passive stiffness of the heart is determined largely by extracellular matrix and titin, which functions as a molecular spring within sarcomeres. Titin stiffening is associated with the development of diastolic dysfunction (DD), while augmented titin compliance appears to impair systolic performance in dilated cardiomyopathy. We found that myofibril stiffness was elevated in mice lacking histone deacetylase 6 (HDAC6). Cultured adult murine ventricular myocytes treated with a selective HDAC6 inhibitor also exhibited increased myofibril stiffness. Conversely, HDAC6 overexpression in cardiomyocytes led to decreased myofibril stiffness, as did ex vivo treatment of mouse, rat, and human myofibrils with recombinant HDAC6. Modulation of myofibril stiffness by HDAC6 was dependent on 282 amino acids encompassing a portion of the PEVK element of titin. HDAC6 colocalized with Z-disks, and proteomics analysis suggested that HDAC6 functions as a sarcomeric protein deacetylase. Finally, increased myofibril stiffness in HDAC6-deficient mice was associated with exacerbated DD in response to hypertension or aging. These findings define a role for a deacetylase in the control of myofibril function and myocardial passive stiffness, suggest that reversible acetylation alters titin compliance, and reveal the potential of targeting HDAC6 to manipulate the elastic properties of the heart to treat cardiac diseases.


Subject(s)
Myofibrils , Sarcomeres , Animals , Connectin/chemistry , Connectin/genetics , Connectin/metabolism , Histone Deacetylase 6/genetics , Histone Deacetylase 6/metabolism , Humans , Mice , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Myofibrils/metabolism , Rats , Sarcomeres/metabolism
5.
Int J Mol Sci ; 22(20)2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34681770

ABSTRACT

Long-term exercise induces physiological cardiac adaptation, a condition referred to as athlete's heart. Exercise tolerance is known to be associated with decreased cardiac passive stiffness. Passive stiffness of the heart muscle is determined by the giant elastic protein titin. The adult cardiac muscle contains two titin isoforms: the more compliant N2BA and the stiffer N2B. Titin-based passive stiffness may be controlled by altering the expression of the different isoforms or via post-translational modifications such as phosphorylation. Currently, there is very limited knowledge about titin's role in cardiac adaptation during long-term exercise. Our aim was to determine the N2BA/N2B ratio and post-translational phosphorylation of titin in the left ventricle and to correlate the changes with the structure and transverse stiffness of cardiac sarcomeres in a rat model of an athlete's heart. The athlete's heart was induced by a 12-week-long swim-based training. In the exercised myocardium the N2BA/N2B ratio was significantly increased, Ser11878 of the PEVK domain was hypophosphorlyated, and the sarcomeric transverse elastic modulus was reduced. Thus, the reduced passive stiffness in the athlete's heart is likely caused by a shift towards the expression of the longer cardiac titin isoform and a phosphorylation-induced softening of the PEVK domain which is manifested in a mechanical rearrangement locally, within the cardiac sarcomere.


Subject(s)
Cardiomegaly, Exercise-Induced/genetics , Connectin/genetics , Myofibrils/metabolism , Adaptation, Physiological/physiology , Animals , Connectin/chemistry , Connectin/metabolism , Disease Models, Animal , Elastic Modulus/physiology , Heart/physiology , Male , Myocardial Contraction/genetics , Myocardium/metabolism , Myocardium/pathology , Myofibrils/pathology , Myofibrils/physiology , Physical Conditioning, Animal/physiology , Protein Isoforms/genetics , Protein Isoforms/metabolism , Rats , Rats, Wistar , Sarcomeres/pathology , Sarcomeres/physiology
6.
J Clin Invest ; 131(9)2021 05 03.
Article in English | MEDLINE | ID: mdl-33755597

ABSTRACT

Troponin C (TnC) is a critical regulator of skeletal muscle contraction; it binds Ca2+ to activate muscle contraction. Surprisingly, the gene encoding fast skeletal TnC (TNNC2) has not yet been implicated in muscle disease. Here, we report 2 families with pathogenic variants in TNNC2. Patients present with a distinct, dominantly inherited congenital muscle disease. Molecular dynamics simulations suggested that the pathomechanisms by which the variants cause muscle disease include disruption of the binding sites for Ca2+ and for troponin I. In line with these findings, physiological studies in myofibers isolated from patients' biopsies revealed a markedly reduced force response of the sarcomeres to [Ca2+]. This pathomechanism was further confirmed in experiments in which contractile dysfunction was evoked by replacing TnC in myofibers from healthy control subjects with recombinant, mutant TnC. Conversely, the contractile dysfunction of myofibers from patients was repaired by replacing endogenous, mutant TnC with recombinant, wild-type TnC. Finally, we tested the therapeutic potential of the fast skeletal muscle troponin activator tirasemtiv in patients' myofibers and showed that the contractile dysfunction was repaired. Thus, our data reveal that pathogenic variants in TNNC2 cause congenital muscle disease, and they provide therapeutic angles to repair muscle contractility.


Subject(s)
Calcium , Molecular Dynamics Simulation , Muscle Contraction , Myotonia Congenita , Sarcomeres , Troponin C , Binding Sites , Calcium/chemistry , Calcium/metabolism , Humans , Myotonia Congenita/genetics , Myotonia Congenita/metabolism , Sarcomeres/chemistry , Sarcomeres/genetics , Sarcomeres/metabolism , Troponin C/chemistry , Troponin C/genetics , Troponin C/metabolism
8.
Biophys J ; 119(4): 721-723, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32735776

Subject(s)
Swimming , Zebrafish , Animals , Fishes , Larva , Muscles
9.
Elife ; 92020 07 10.
Article in English | MEDLINE | ID: mdl-32648542

ABSTRACT

Diastolic dysfunction is a prominent feature of cardiac aging in both mice and humans. We show here that 8-week treatment of old mice with the mitochondrial targeted peptide SS-31 (elamipretide) can substantially reverse this deficit. SS-31 normalized the increase in proton leak and reduced mitochondrial ROS in cardiomyocytes from old mice, accompanied by reduced protein oxidation and a shift towards a more reduced protein thiol redox state in old hearts. Improved diastolic function was concordant with increased phosphorylation of cMyBP-C Ser282 but was independent of titin isoform shift. Late-life viral expression of mitochondrial-targeted catalase (mCAT) produced similar functional benefits in old mice and SS-31 did not improve cardiac function of old mCAT mice, implicating normalizing mitochondrial oxidative stress as an overlapping mechanism. These results demonstrate that pre-existing cardiac aging phenotypes can be reversed by targeting mitochondrial dysfunction and implicate mitochondrial energetics and redox signaling as therapeutic targets for cardiac aging.


Subject(s)
Aging/drug effects , Heart Diseases/drug therapy , Mitochondria/physiology , Oligopeptides/administration & dosage , Oxidative Stress , Animals , Energy Metabolism , Female , Heart Diseases/physiopathology , Male , Mice , Mice, Inbred C57BL , Oxidation-Reduction
10.
Front Physiol ; 11: 494, 2020.
Article in English | MEDLINE | ID: mdl-32547410

ABSTRACT

The Proline, Glutamate, Valine and Lysine-rich (PEVK) region of titin constitutes an entropic spring that provides passive tension to striated muscle. To study the functional and structural repercussions of a small reduction in the size of the PEVK region, we investigated skeletal muscles of a mouse with the constitutively expressed C-terminal PEVK exons 219-225 deleted, the TtnΔ219-225 model (MGI: TtnTM 2.1Mgot ). Based on this deletion, passive tension in skeletal muscle was predicted to be increased by ∼17% (sarcomere length 3.0 µm). In contrast, measured passive tension (sarcomere length 3.0 µm) in both soleus and EDL muscles was increased 53 ± 11% and 62 ± 4%, respectively. This unexpected increase was due to changes in titin, not to alterations in the extracellular matrix, and is likely caused by co-expression of two titin isoforms in TtnΔ219-225 muscles: a larger isoform that represents the TtnΔ219-225 N2A titin and a smaller isoform, referred to as N2A2. N2A2 represents a splicing adaption with reduced expression of spring element exons, as determined by titin exon microarray analysis. Maximal tetanic tension was increased in TtnΔ219-225 soleus muscle (WT 240 ± 9; TtnΔ219-225 276 ± 17 mN/mm2), but was reduced in EDL muscle (WT 315 ± 9; TtnΔ219-225 280 ± 14 mN/mm2). The changes in active tension coincided with a switch toward slow fiber types and, unexpectedly, faster kinetics of tension generation and relaxation. Functional overload (FO; ablation) and hindlimb suspension (HS; unloading) experiments were also conducted. TtnΔ219-225 mice showed increases in both longitudinal hypertrophy (increased number of sarcomeres in series) and cross-sectional hypertrophy (increased number of sarcomeres in parallel) in response to FO and attenuated cross-sectional atrophy in response to HS. In summary, slow- and fast-twitch muscles in a mouse model devoid of titin's PEVK exons 219-225 have high passive tension, due in part to alterations elsewhere in splicing of titin's spring region, increased kinetics of tension generation and relaxation, and altered trophic responses to both functional overload and unloading. This implicates titin's C-terminal PEVK region in regulating passive and active muscle mechanics and muscle plasticity.

11.
Int J Mol Sci ; 20(20)2019 Oct 10.
Article in English | MEDLINE | ID: mdl-31658633

ABSTRACT

Respiratory failure due to diaphragm dysfunction is considered a main cause of death in nemaline myopathy (NM) and we studied both isometric force and isotonic shortening of diaphragm muscle in a mouse model of nebulin-based NM (Neb cKO). A large contractile deficit was found in nebulin-deficient intact muscle that is frequency dependent, with the largest deficits at low-intermediate stimulation frequencies (e.g., a deficit of 72% at a stimulation frequency of 20 Hz). The effect of the fast skeletal muscle troponin activator (FSTA) tirasemtiv on force was examined. Tirasemtiv had a negligible effect at maximal stimulation frequencies, but greatly reduced the force deficit of the diaphragm at sub-maximal stimulation levels with an effect that was largest in Neb cKO diaphragm. As a result, the force deficit of Neb cKO diaphragm fell (from 72% to 29% at 20 Hz). Similar effects were found in in vivo experiments on the nerve-stimulated gastrocnemius muscle complex. Load-clamp experiments on diaphragm muscle showed that tirasemtiv increased the shortening velocity, and reduced the deficit in mechanical power by 33%. Thus, tirasemtiv significantly improves muscle function in a mouse model of nebulin-based nemaline myopathy.


Subject(s)
Diaphragm/physiology , Imidazoles/metabolism , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Myopathies, Nemaline/metabolism , Pyrazines/metabolism , Troponin/metabolism , Animals , Copper Transporter 1/genetics , Disease Models, Animal , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle Contraction , Muscle Proteins/genetics
12.
J Am Coll Cardiol ; 73(21): 2705-2718, 2019 06 04.
Article in English | MEDLINE | ID: mdl-31146816

ABSTRACT

BACKGROUND: Patients with chronic kidney disease (CKD) and coincident heart failure with preserved ejection fraction (HFpEF) may constitute a distinct HFpEF phenotype. Osteopontin (OPN) is a biomarker of HFpEF and predictive of disease outcome. We recently reported that OPN blockade reversed hypertension, mitochondrial dysfunction, and kidney failure in Col4a3-/- mice, a model of human Alport syndrome. OBJECTIVES: The purpose of this study was to identify potential OPN targets in biopsies of HF patients, healthy control subjects, and human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs), and to characterize the cardiac phenotype of Col4a3-/- mice, relate this to HFpEF, and investigate possible causative roles for OPN in driving the cardiomyopathy. METHODS: OGDHL mRNA and protein were quantified in myocardial samples from patients with HFpEF, heart failure with reduced ejection fraction, and donor control subjects. OGDHL expression was quantified in hiPS-CMs treated with or without anti-OPN antibody. Cardiac parameters were evaluated in Col4a3-/- mice with and without global OPN knockout or AAV9-mediated delivery of 2-oxoglutarate dehydrogenase-like (Ogdhl) to the heart. RESULTS: OGDHL mRNA and protein displayed abnormal abundances in cardiac biopsies of HFpEF (n = 17) compared with donor control subjects (n = 12; p < 0.01) or heart failure with reduced ejection fraction patients (n = 12; p < 0.05). Blockade of OPN in hiPS-CMs conferred increased OGDHL expression. Col4a3-/- mice demonstrated cardiomyopathy with similarities to HFpEF, including diastolic dysfunction, cardiac hypertrophy and fibrosis, pulmonary edema, and impaired mitochondrial function. The cardiomyopathy was ameliorated by Opn-/- coincident with improved renal function and increased expression of Ogdhl. Heart-specific overexpression of Ogdhl in Col4a3-/- mice also improved cardiac function and cardiomyocyte energy state. CONCLUSIONS: Col4a3-/- mice present a model of HFpEF secondary to CKD wherein OPN and OGDHL are intermediates, and possibly therapeutic targets.


Subject(s)
Disease Models, Animal , Heart Failure, Diastolic/etiology , Ketoglutarate Dehydrogenase Complex/metabolism , Osteopontin/metabolism , Ventricular Dysfunction, Left/etiology , Animals , Autoantigens/genetics , Collagen Type IV/genetics , Fibrosis , Genetic Therapy , Heart Failure, Diastolic/metabolism , Heart Failure, Diastolic/pathology , Heart Failure, Diastolic/therapy , Ketoglutarate Dehydrogenase Complex/genetics , Mice , Mice, Knockout , Mitochondria/metabolism , Myocardium/metabolism , Myocardium/pathology , Nephritis, Hereditary/complications , Osteopontin/genetics , Oxidative Stress , Ventricular Dysfunction, Left/metabolism
13.
Am J Physiol Cell Physiol ; 317(2): C167-C176, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31042425

ABSTRACT

The diaphragm, the main muscle of inspiration, is constantly subjected to mechanical loading. Only during controlled mechanical ventilation, as occurs during thoracic surgery and in the intensive care unit, is mechanical loading of the diaphragm arrested. Animal studies indicate that the diaphragm is highly sensitive to unloading, causing rapid muscle fiber atrophy and contractile weakness; unloading-induced diaphragm atrophy and contractile weakness have been suggested to contribute to the difficulties in weaning patients from ventilator support. The molecular triggers that initiate the rapid unloading atrophy of the diaphragm are not well understood, although proteolytic pathways and oxidative signaling have been shown to be involved. Mechanical stress is known to play an important role in the maintenance of muscle mass. Within the muscle's sarcomere, titin is considered to play an important role in the stress-response machinery. Titin is a giant protein that acts as a mechanosensor regulating muscle protein expression in a sarcomere strain-dependent fashion. Thus titin is an attractive candidate for sensing the sudden mechanical arrest of the diaphragm when patients are mechanically ventilated, leading to changes in muscle protein expression. Here, we provide a novel perspective on how titin and its biomechanical sensing and signaling might be involved in the development of mechanical unloading-induced diaphragm weakness.


Subject(s)
Connectin/metabolism , Diaphragm/metabolism , Lung Diseases/metabolism , Mechanotransduction, Cellular , Muscle Contraction , Muscle Strength , Muscle Weakness/metabolism , Muscular Atrophy/metabolism , Animals , Diaphragm/pathology , Diaphragm/physiopathology , Humans , Lung Diseases/pathology , Lung Diseases/physiopathology , Lung Diseases/therapy , Muscle Weakness/pathology , Muscle Weakness/physiopathology , Muscular Atrophy/pathology , Muscular Atrophy/physiopathology , Respiration, Artificial
14.
J Gen Physiol ; 151(5): 680-704, 2019 05 06.
Article in English | MEDLINE | ID: mdl-30948421

ABSTRACT

Various mutations in the structural proteins nebulin and titin that are present in human disease are known to affect the contractility of striated muscle. Loss of nebulin is associated with reduced actin filament length and impairment of myosin binding to actin, whereas titin is thought to regulate muscle passive elasticity and is likely involved in length-dependent activation. Here, we sought to assess the modulation of muscle function by these sarcomeric proteins by using the computational platform muscle simulation code (MUSICO) to quantitatively separate the effects of structural changes, kinetics of cross-bridge cycling, and calcium sensitivity of the thin filaments. The simulations show that variation in thin filament length cannot by itself account for experimental observations of the contractility in nebulin-deficient muscle, but instead must be accompanied by a decreased myosin binding rate. Additionally, to match the observed calcium sensitivity, the rate of TnI detachment from actin needed to be increased. Simulations for cardiac muscle provided quantitative estimates of the effects of different titin-based passive elasticities on muscle force and activation in response to changes in sarcomere length and interfilament lattice spacing. Predicted force-pCa relations showed a decrease in both active tension and sensitivity to calcium with a decrease in passive tension and sarcomere length. We conclude that this behavior is caused by partial redistribution of the muscle load between active muscle force and titin-dependent passive force, and also by redistribution of stretch along the thin filament, which together modulate the release of TnI from actin. These data help advance understanding of how nebulin and titin mutations affect muscle function.


Subject(s)
Calcium/metabolism , Connectin/metabolism , Muscle Proteins/metabolism , Actin Cytoskeleton/metabolism , Actins/metabolism , Animals , Elasticity/physiology , Humans , Kinetics , Muscle Contraction/physiology , Muscle, Skeletal/metabolism , Myocardium/metabolism , Sarcomeres/metabolism
16.
Circulation ; 139(15): 1813-1827, 2019 04 09.
Article in English | MEDLINE | ID: mdl-30700140

ABSTRACT

BACKGROUND: Titin is a giant elastic protein that spans the half-sarcomere from Z-disk to M-band. It acts as a molecular spring and mechanosensor and has been linked to striated muscle disease. The pathways that govern titin-dependent cardiac growth and contribute to disease are diverse and difficult to dissect. METHODS: To study titin deficiency versus dysfunction, the authors generated and compared striated muscle specific knockouts (KOs) with progressive postnatal loss of the complete titin protein by removing exon 2 (E2-KO) or an M-band truncation that eliminates proper sarcomeric integration, but retains all other functional domains (M-band exon 1/2 [M1/2]-KO). The authors evaluated cardiac function, cardiomyocyte mechanics, and the molecular basis of the phenotype. RESULTS: Skeletal muscle atrophy with reduced strength, severe sarcomere disassembly, and lethality from 2 weeks of age were shared between the models. Cardiac phenotypes differed considerably: loss of titin leads to dilated cardiomyopathy with combined systolic and diastolic dysfunction-the absence of M-band titin to cardiac atrophy and preserved function. The elastic properties of M1/2-KO cardiomyocytes are maintained, while passive stiffness is reduced in the E2-KO. In both KOs, we find an increased stress response and increased expression of proteins linked to titin-based mechanotransduction (CryAB, ANKRD1, muscle LIM protein, FHLs, p42, Camk2d, p62, and Nbr1). Among them, FHL2 and the M-band signaling proteins p62 and Nbr1 are exclusively upregulated in the E2-KO, suggesting a role in the differential pathology of titin truncation versus deficiency of the full-length protein. The differential stress response is consistent with truncated titin contributing to the mechanical properties in M1/2-KOs, while low titin levels in E2-KOs lead to reduced titin-based stiffness and increased strain on the remaining titin molecules. CONCLUSIONS: Progressive depletion of titin leads to sarcomere disassembly and atrophy in striated muscle. In the complete knockout, remaining titin molecules experience increased strain, resulting in mechanically induced trophic signaling and eventually dilated cardiomyopathy. The truncated titin in M1/2-KO helps maintain the passive properties and thus reduces mechanically induced signaling. Together, these findings contribute to the molecular understanding of why titin mutations differentially affect cardiac growth and have implications for genotype-phenotype relations that support a personalized medicine approach to the diverse titinopathies.


Subject(s)
Cardiomyopathy, Dilated/metabolism , Mechanotransduction, Cellular , Myocytes, Cardiac/metabolism , Protein Kinases/deficiency , Sarcomeres/metabolism , Ventricular Dysfunction, Left/metabolism , Ventricular Dysfunction, Right/metabolism , Animals , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/pathology , Cardiomyopathy, Dilated/physiopathology , Gene Deletion , Male , Mice, Knockout , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Atrophy/genetics , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Myocytes, Cardiac/pathology , Phenotype , Protein Kinases/genetics , Sarcomeres/pathology , Ventricular Dysfunction, Left/genetics , Ventricular Dysfunction, Left/pathology , Ventricular Dysfunction, Left/physiopathology , Ventricular Dysfunction, Right/genetics , Ventricular Dysfunction, Right/pathology , Ventricular Dysfunction, Right/physiopathology , Ventricular Function, Left , Ventricular Function, Right
17.
J Neuropathol Exp Neurol ; 78(2): 130-139, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30597051

ABSTRACT

Mutations in at least 12 genes are responsible for a group of congenital skeletal muscle diseases known as nemaline myopathies (NMs). NMs are associated with a range of clinical symptoms and pathological changes often including the presence of cytoplasmic rod-like structures (nemaline bodies) and myofiber hypotrophy. Our recent work has identified a variable degree of behavioral benefit when treating 2 NM mouse models due to mutations in Acta1 with myostatin inhibition. This study is focused on the effects of delivering ActRIIB-mFc (Acceleron; a myostatin inhibitor) to the nebulin conditional knockout KO (Neb cKO) mouse model of NM. Treatment of Neb cKO mice with ActRIIB-mFc did not produce increases in weight gain, strength, myofiber size, or hypertrophic pathway signaling. Overall, our studies demonstrate a lack of response in Neb cKO mice to myostatin inhibition, which differs from the response observed when treating other NM models.


Subject(s)
Activin Receptors, Type II/pharmacology , Muscle Strength/drug effects , Myopathies, Nemaline , Myostatin/antagonists & inhibitors , Weight Gain/drug effects , Animals , Mice , Mice, Knockout , Muscle Proteins/deficiency , Muscle Weakness/genetics
18.
J Gen Physiol ; 151(1): 30-41, 2019 01 07.
Article in English | MEDLINE | ID: mdl-30523116

ABSTRACT

Cardiac performance is tightly regulated at the cardiomyocyte level by sarcomere length, such that increases in sarcomere length lead to sharply enhanced force generation at the same Ca2+ concentration. Length-dependent activation of myofilaments involves dynamic and complex interactions between a multitude of thick- and thin-filament components. Among these components, troponin, myosin, and the giant protein titin are likely to be key players, but the mechanism by which these proteins are functionally linked has been elusive. Here, we investigate this link in the mouse myocardium using in situ FRET techniques. Our objective was to monitor how length-dependent Ca2+-induced conformational changes in the N domain of cardiac troponin C (cTnC) are modulated by myosin-actin cross-bridge (XB) interactions and increased titin compliance. We reconstitute FRET donor- and acceptor-modified cTnC(13C/51C)AEDANS-DDPM into chemically skinned myocardial fibers from wild-type and RBM20-deletion mice. The Ca2+-induced conformational changes in cTnC are quantified and characterized using time-resolved FRET measurements as XB state and sarcomere length are varied. The RBM20-deficient mouse expresses a more compliant N2BA titin isoform, leading to reduced passive tension in the myocardium. This provides a molecular tool to investigate how altered titin-based passive tension affects Ca2+-troponin regulation in response to mechanical stretch. In wild-type myocardium, we observe a direct association of sarcomere length-dependent enhancement of troponin regulation with both Ca2+ activation and strongly bound XB states. In comparison, measurements from titin RBM20-deficient animals show blunted sarcomere length-dependent effects. These results suggest that titin-based passive tension contributes to sarcomere length-dependent Ca2+-troponin regulation. We also conclude that strong XB binding plays an important role in linking the modulatory effect of titin compliance to Ca2+-troponin regulation of the myocardium.


Subject(s)
Calcium/metabolism , Myocardium/metabolism , Protein Kinases/metabolism , Sarcomeres/metabolism , Troponin C/metabolism , Actins/metabolism , Animals , Mice , Myocardial Contraction/physiology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , Myosins/metabolism , Protein Domains/physiology
19.
J Gen Physiol ; 151(1): 42-52, 2019 01 07.
Article in English | MEDLINE | ID: mdl-30567709

ABSTRACT

Heart failure with preserved ejection fraction (HFpEF) is a complex syndrome characterized by a preserved ejection fraction but increased diastolic stiffness and abnormalities of filling. Although the prevalence of HFpEF is high and continues to rise, no effective therapies exist; however, the diabetic drug metformin has been associated with improved diastolic function in diabetic patients. Here we determine the therapeutic potential of metformin for improving diastolic function in a mouse model with HFpEF-like symptoms. We combine transverse aortic constriction (TAC) surgery with deoxycorticosterone acetate (DOCA) supplementation to obtain a mouse model with increased diastolic stiffness and exercise intolerance. Echocardiography and pressure-volume analysis reveal that providing metformin to TAC/DOCA mice improves diastolic function in the left ventricular (LV) chamber. Muscle mechanics show that metformin lowers passive stiffness of the LV wall muscle. Concomitant with this improvement in diastolic function, metformin-treated TAC/DOCA mice also demonstrate preserved exercise capacity. No metformin effects are seen in sham operated mice. Extraction experiments on skinned ventricular muscle strips show that the metformin-induced reduction of passive stiffness in TAC/DOCA mice is due to an increase in titin compliance. Using phospho-site-specific antibodies, we assay the phosphorylation of titin's PEVK and N2B spring elements. Metformin-treated mice have unaltered PEVK phosphorylation but increased phosphorylation of PKA sites in the N2B element, a change which has previously been shown to lower titin's stiffness. Consistent with this result, experiments with a mouse model deficient in the N2B element reveal that the beneficial effect of metformin on LV chamber and muscle stiffness requires the presence of the N2B element. We conclude that metformin offers therapeutic benefit during HFpEF by lowering titin-based passive stiffness.


Subject(s)
Diastole/drug effects , Heart Failure/drug therapy , Metformin/pharmacology , Protein Kinases/metabolism , Animals , Desoxycorticosterone Acetate/pharmacology , Disease Models, Animal , Heart Failure/metabolism , Heart Ventricles/drug effects , Heart Ventricles/metabolism , Male , Mice , Mice, Inbred C57BL , Myocardium/metabolism , Phosphorylation/drug effects , Stroke Volume/drug effects
20.
Elife ; 72018 12 19.
Article in English | MEDLINE | ID: mdl-30565562

ABSTRACT

Titin, the largest protein known, forms an elastic myofilament in the striated muscle sarcomere. To establish titin's contribution to skeletal muscle passive stiffness, relative to that of the extracellular matrix, a mouse model was created in which titin's molecular spring region was shortened by deleting 47 exons, the TtnΔ112-158 model. RNA sequencing and super-resolution microscopy predicts a much stiffer titin molecule. Mechanical studies with this novel mouse model support that titin is the main determinant of skeletal muscle passive stiffness. Unexpectedly, the in vivo sarcomere length working range was shifted to shorter lengths in TtnΔ112-158 mice, due to a ~ 30% increase in the number of sarcomeres in series (longitudinal hypertrophy). The expected effect of this shift on active force generation was minimized through a shortening of thin filaments that was discovered in TtnΔ112-158 mice. Thus, skeletal muscle titin is the dominant determinant of physiological passive stiffness and drives longitudinal hypertrophy. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).


Subject(s)
Connectin/chemistry , Hypertrophy/genetics , Muscle, Skeletal/ultrastructure , Muscle, Striated/ultrastructure , Actin Cytoskeleton/chemistry , Actin Cytoskeleton/genetics , Animals , Connectin/genetics , Elastic Tissue/chemistry , Extracellular Matrix/chemistry , Extracellular Matrix/genetics , Humans , Hypertrophy/physiopathology , Mice , Muscle, Skeletal/chemistry , Muscle, Striated/chemistry , Muscle, Striated/physiology , Myocardium/chemistry , Myocardium/pathology , Myofibrils/chemistry , Sarcomeres/chemistry , Sarcomeres/genetics
SELECTION OF CITATIONS
SEARCH DETAIL