Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nanoscale ; 15(29): 12348-12357, 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37449871

ABSTRACT

The ultraflat and dangling bond-free features of two-dimensional (2D) transition metal dichalcogenides (TMDs) endow them with great potential to be integrated with arbitrary three-dimensional (3D) substrates, forming mixed-dimensional 2D/3D heterostructures. As examples, 2D/3D heterostructures based on monolayer TMDs (e.g., WS2) and bulk germanium (Ge) have become emerging candidates for optoelectronic applications, such as ultrasensitive photodetectors that are capable of detecting broadband light from the mid-infrared (IR) to visible range. Currently, the study of WS2/Ge(100) heterostructures is in its infancy and it remains largely unexplored how sample preparation conditions and different substrates affect their photoluminescence (PL) and other optoelectronic properties. In this report, we investigated the PL quenching effect in monolayer WS2/Ge heterostructures prepared via a wet transfer process, and employed PL spectroscopy and atomic force microscopy (AFM) to demonstrate that post-transfer low-pressure annealing improves the interface quality and homogenizes the PL signal. We further studied and compared the temperature-dependent PL emissions of WS2/Ge with those of as-grown WS2 and WS2/graphene/Ge heterostructures. The results demonstrate that the integration of WS2 on Ge significantly quenches the PL intensity (from room temperature down to 80 K), and the PL quenching effect becomes even more prominent in WS2/graphene/Ge heterostructures, which is likely due to synergistic PL quenching effects induced by graphene and Ge. Density functional theory (DFT) and Heyd-Scuseria-Ernzerhof (HSE) hybrid functional calculations show that the interaction of WS2 and Ge is stronger than in adjacent layers of bulk WS2, thus changing the electronic band structure and making the direct band gap of monolayer WS2 less accessible. By understanding the impact of post-transfer annealing and substrate interactions on the optical properties of monolayer TMD/Ge heterostructures, this study contributes to the exploration of the processing-properties relationship and may guide the future design and fabrication of optoelectronic devices based on 2D/3D heterostructures of TMDs/Ge.

2.
ACS Nanosci Au ; 2(6): 450-485, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36573124

ABSTRACT

Since the isolation of graphene in 2004, two-dimensional (2D) materials research has rapidly evolved into an entire subdiscipline in the physical sciences with a wide range of emergent applications. The unique 2D structure offers an open canvas to tailor and functionalize 2D materials through layer number, defects, morphology, moiré pattern, strain, and other control knobs. Through this review, we aim to highlight the most recent discoveries in the following topics: theory-guided synthesis for enhanced control of 2D morphologies, quality, yield, as well as insights toward novel 2D materials; defect engineering to control and understand the role of various defects, including in situ and ex situ methods; and properties and applications that are related to moiré engineering, strain engineering, and artificial intelligence. Finally, we also provide our perspective on the challenges and opportunities in this fascinating field.

3.
ACS Nano ; 16(4): 6426-6436, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35333038

ABSTRACT

The study of Alzheimer's disease (AD), the most common cause of dementia, faces challenges in terms of understanding the cause, monitoring the pathogenesis, and developing early diagnoses and effective treatments. Rapid and accurate identification of AD biomarkers in the brain is critical to providing key insights into AD and facilitating the development of early diagnosis methods. In this work, we developed a platform that enables a rapid screening of AD biomarkers by employing graphene-assisted Raman spectroscopy and machine learning interpretation in AD transgenic animal brains. Specifically, we collected Raman spectra on slices of mouse brains with and without AD and used machine learning to classify AD and non-AD spectra. By contacting monolayer graphene with the brain slices, the accuracy was increased from 77% to 98% in machine learning classification. Further, using a linear support vector machine (SVM), we identified a spectral feature importance map that reveals the importance of each Raman wavenumber in classifying AD and non-AD spectra. Based on this spectral feature importance map, we identified AD biomarkers including Aß and tau proteins and other potential biomarkers, such as triolein, phosphatidylcholine, and actin, which have been confirmed by other biochemical studies. Our Raman-machine learning integrated method with interpretability will facilitate the study of AD and can be extended to other tissues and biofluids and for various other diseases.


Subject(s)
Alzheimer Disease , Graphite , Animals , Mice , Alzheimer Disease/diagnosis , Alzheimer Disease/pathology , Spectrum Analysis, Raman , Magnetic Resonance Imaging/methods , Machine Learning , Biomarkers
4.
Sci Adv ; 6(32): eabc4250, 2020 08.
Article in English | MEDLINE | ID: mdl-32821846

ABSTRACT

Two-dimensional transition metal dichalcogenides (TMDs) emerged as a promising platform to construct sensitive biosensors. We report an ultrasensitive electrochemical dopamine sensor based on manganese-doped MoS2 synthesized via a scalable two-step approach (with Mn ~2.15 atomic %). Selective dopamine detection is achieved with a detection limit of 50 pM in buffer solution, 5 nM in 10% serum, and 50 nM in artificial sweat. Density functional theory calculations and scanning transmission electron microscopy show that two types of Mn defects are dominant: Mn on top of a Mo atom (MntopMo) and Mn substituting a Mo atom (MnMo). At low dopamine concentrations, physisorption on MnMo dominates. At higher concentrations, dopamine chemisorbs on MntopMo, which is consistent with calculations of the dopamine binding energy (2.91 eV for MntopMo versus 0.65 eV for MnMo). Our results demonstrate that metal-doped layered materials, such as TMDs, constitute an emergent platform to construct ultrasensitive and tunable biosensors.

5.
Proc Natl Acad Sci U S A ; 117(33): 19685-19693, 2020 Aug 18.
Article in English | MEDLINE | ID: mdl-32727904

ABSTRACT

Stacking layers of atomically thin transition-metal carbides and two-dimensional (2D) semiconducting transition-metal dichalcogenides, could lead to nontrivial superconductivity and other unprecedented phenomena yet to be studied. In this work, superconducting α-phase thin molybdenum carbide flakes were first synthesized, and a subsequent sulfurization treatment induced the formation of vertical heterolayer systems consisting of different phases of molybdenum carbide-ranging from α to γ' and γ phases-in conjunction with molybdenum sulfide layers. These transition-metal carbide/disulfide heterostructures exhibited critical superconducting temperatures as high as 6 K, higher than that of the starting single-phased α-Mo2C (4 K). We analyzed possible interface configurations to explain the observed moiré patterns resulting from the vertical heterostacks. Our density-functional theory (DFT) calculations indicate that epitaxial strain and moiré patterns lead to a higher interfacial density of states, which favors superconductivity. Such engineered heterostructures might allow the coupling of superconductivity to the topologically nontrivial surface states featured by transition-metal carbide phases composing these heterostructures potentially leading to unconventional superconductivity. Moreover, we envisage that our approach could also be generalized to other metal carbide and nitride systems that could exhibit high-temperature superconductivity.

6.
Article in English | MEDLINE | ID: mdl-32493008

ABSTRACT

The vertical integration of atomically thin-layered materials to create van der Waals heterostructures (vdWHs) has been proposed as a method to design nanostructures with emergent properties. In this work, epitaxial Bi2Te3/WS2 vdWHs are synthesized via a two-step vapor deposition process. It is calculated that the vdWH has an indirect band gap with a valence band edge that bridges the vdW gap, resulting in a quenched photoluminescence (PL) from the WS2 monolayer, reduced intensity of its resonance Raman vibrational peaks, improved vertical charge transport, and a decrease in the intensity of second harmonic generation (SHG). Furthermore, it is observed that induced defects strongly influence the nucleation and growth of vdWHs. By creating point defects in WS2 monolayers, it is shown that the growth of Bi2Te3 platelets can be patterned. This work offers important insights into the synthesis, defect engineering, and moiré engineering of an emerging class of two-dimensional (2D) heterostructures.

7.
Front Physiol ; 11: 494, 2020.
Article in English | MEDLINE | ID: mdl-32547410

ABSTRACT

The Proline, Glutamate, Valine and Lysine-rich (PEVK) region of titin constitutes an entropic spring that provides passive tension to striated muscle. To study the functional and structural repercussions of a small reduction in the size of the PEVK region, we investigated skeletal muscles of a mouse with the constitutively expressed C-terminal PEVK exons 219-225 deleted, the TtnΔ219-225 model (MGI: TtnTM 2.1Mgot ). Based on this deletion, passive tension in skeletal muscle was predicted to be increased by ∼17% (sarcomere length 3.0 µm). In contrast, measured passive tension (sarcomere length 3.0 µm) in both soleus and EDL muscles was increased 53 ± 11% and 62 ± 4%, respectively. This unexpected increase was due to changes in titin, not to alterations in the extracellular matrix, and is likely caused by co-expression of two titin isoforms in TtnΔ219-225 muscles: a larger isoform that represents the TtnΔ219-225 N2A titin and a smaller isoform, referred to as N2A2. N2A2 represents a splicing adaption with reduced expression of spring element exons, as determined by titin exon microarray analysis. Maximal tetanic tension was increased in TtnΔ219-225 soleus muscle (WT 240 ± 9; TtnΔ219-225 276 ± 17 mN/mm2), but was reduced in EDL muscle (WT 315 ± 9; TtnΔ219-225 280 ± 14 mN/mm2). The changes in active tension coincided with a switch toward slow fiber types and, unexpectedly, faster kinetics of tension generation and relaxation. Functional overload (FO; ablation) and hindlimb suspension (HS; unloading) experiments were also conducted. TtnΔ219-225 mice showed increases in both longitudinal hypertrophy (increased number of sarcomeres in series) and cross-sectional hypertrophy (increased number of sarcomeres in parallel) in response to FO and attenuated cross-sectional atrophy in response to HS. In summary, slow- and fast-twitch muscles in a mouse model devoid of titin's PEVK exons 219-225 have high passive tension, due in part to alterations elsewhere in splicing of titin's spring region, increased kinetics of tension generation and relaxation, and altered trophic responses to both functional overload and unloading. This implicates titin's C-terminal PEVK region in regulating passive and active muscle mechanics and muscle plasticity.

8.
Nano Lett ; 20(5): 3113-3121, 2020 May 13.
Article in English | MEDLINE | ID: mdl-32134680

ABSTRACT

Numerous theoretically proposed devices and novel phenomena have sought to take advantage of the intense pseudogauge fields that can arise in strained graphene. Many of these proposals, however, require fields to oscillate with a spatial frequency smaller than the magnetic length, while to date only the generation and effects of fields varying at a much larger length scale have been reported. Here, we describe the creation of short wavelength, periodic pseudogauge-fields using rippled graphene under extreme (>10%) strain and study of its effects on Dirac electrons. Combining scanning tunneling microscopy and atomistic calculations, we find that spatially oscillating strain generates a new quantization different from the familiar Landau quantization. Graphene ripples also cause large variations in carbon-carbon bond length, creating an effective electronic superlattice within a single graphene sheet. Our results thus also establish a novel approach of synthesizing effective 2D lateral heterostructures by periodically modulating lattice strain.

9.
ACS Nano ; 14(4): 4326-4335, 2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32208674

ABSTRACT

Doping lies at the heart of modern semiconductor technologies. Therefore, for two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDs), the significance of controlled doping is no exception. Recent studies have indicated that, by substitutionally doping 2D TMDs with a judicious selection of dopants, their electrical, optical, magnetic, and catalytic properties can be effectively tuned, endowing them with great potential for various practical applications. Herein, and inspired by the sol-gel process, we report a liquid-phase precursor-assisted approach for in situ substitutional doping of monolayered TMDs and their in-plane heterostructures with tunable doping concentration. This highly reproducible route is based on the high-temperature chalcogenation of spin-coated aqueous solutions containing host and dopant precursors. The precursors are mixed homogeneously at the atomic level in the liquid phase prior to the synthesis process, thus allowing for an improved doping uniformity and controllability. We further demonstrate the incorporation of various transition metal atoms, such as iron (Fe), rhenium (Re), and vanadium (V), into the lattice of TMD monolayers to form Fe-doped WS2, Re-doped MoS2, and more complex material systems such as V-doped in-plane WxMo1-xS2-MoxW1-xS2 heterostructures, among others. We envisage that our developed approach is universal and could be extended to incorporate a variety of other elements into 2D TMDs and create in-plane heterointerfaces in a single step, which may enable applications such as electronics and spintronics at the 2D limit.

10.
Nanomaterials (Basel) ; 9(4)2019 Apr 02.
Article in English | MEDLINE | ID: mdl-30986978

ABSTRACT

Graphene is a two-dimensional (2D) material consisting of a single sheet of sp² hybridized carbon atoms laced in a hexagonal lattice, with potentially wide usage as a Raman enhancement substrate, also termed graphene-enhanced Raman scattering (GERS), making it ideal for sensing applications. GERS improves upon traditional surface-enhanced Raman scattering (SERS), combining its single-molecule sensitivity and spectral fingerprinting of molecules, and graphene's simple processing and superior uniformity. This enables fast and highly sensitive detection of a wide variety of analytes. Accordingly, GERS has been investigated for a wide variety of sensing applications, including chemical- and bio-sensing. As a derivative of GERS, the use of two-dimensional materials other than graphene for Raman enhancement has emerged, which possess remarkably interesting properties and potential wider applications in combination with GERS. In this review, we first introduce various types of 2D materials, including graphene, MoS2, doped graphene, their properties, and synthesis. Then, we describe the principles of GERS and comprehensively explain how the GERS enhancement factors are influenced by molecular and 2D material properties. In the last section, we discuss the application of GERS in chemical- and bio-sensing, and the prospects of such a novel sensing method.

11.
Nanomaterials (Basel) ; 9(3)2019 Mar 12.
Article in English | MEDLINE | ID: mdl-30871112

ABSTRACT

Graphene provides a unique platform for the detailed study of its dopants at the atomic level. Previously, doped materials including Si, and 0D-1D carbon nanomaterials presented difficulties in the characterization of their dopants due to gradients in their dopant concentration and agglomeration of the material itself. Graphene's two-dimensional nature allows for the detailed characterization of these dopants via spectroscopic and atomic resolution imaging techniques. Nitrogen doping of graphene has been well studied, providing insights into the dopant bonding structure, dopant-dopant interaction, and spatial segregation within a single crystal. Different configurations of nitrogen within the carbon lattice have different electronic and chemical properties, and by controlling these dopants it is possible to either n- or p-type dope graphene, grant half-metallicity, and alter nitrogen doped graphene's (NG) catalytic and sensing properties. Thus, an understanding and the ability to control different types of nitrogen doping configurations allows for the fine tuning of NG's properties. Here we review the synthesis, characterization, and properties of nitrogen dopants in NG beyond atomic dopant concentration.

SELECTION OF CITATIONS
SEARCH DETAIL
...