Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Brain ; 147(1): 147-162, 2024 01 04.
Article in English | MEDLINE | ID: mdl-37640028

ABSTRACT

Multiple sclerosis is a chronic neuroinflammatory disorder characterized by demyelination, oligodendrocyte damage/loss and neuroaxonal injury in the context of immune cell infiltration in the CNS. No neuroprotective therapy is available to promote the survival of oligodendrocytes and protect their myelin processes in immune-mediated demyelinating diseases. Pro-inflammatory CD4 Th17 cells can interact with oligodendrocytes in multiple sclerosis and its animal model, causing injury to myelinating processes and cell death through direct contact. However, the molecular mechanisms underlying the close contact and subsequent detrimental interaction of Th17 cells with oligodendrocytes remain unclear. In this study we used single cell RNA sequencing, flow cytometry and immunofluorescence studies on CNS tissue from multiple sclerosis subjects, its animal model and controls to characterize the expression of cell adhesion molecules by mature oligodendrocytes. We found that a significant proportion of human and murine mature oligodendrocytes express melanoma cell adhesion molecule (MCAM) and activated leukocyte cell adhesion molecule (ALCAM) in multiple sclerosis, in experimental autoimmune encephalomyelitis and in controls, although their regulation differs between human and mouse. We observed that exposure to pro-inflammatory cytokines or to human activated T cells are associated with a marked downregulation of the expression of MCAM but not of ALCAM at the surface of human primary oligodendrocytes. Furthermore, we used in vitro live imaging, immunofluorescence and flow cytometry to determine the contribution of these molecules to Th17-polarized cell adhesion and cytotoxicity towards human oligodendrocytes. Silencing and blocking ALCAM but not MCAM limited prolonged interactions between human primary oligodendrocytes and Th17-polarized cells, resulting in decreased adhesion of Th17-polarized cells to oligodendrocytes and conferring significant protection of oligodendrocytic processes. In conclusion, we showed that human oligodendrocytes express MCAM and ALCAM, which are differently modulated by inflammation and T cell contact. We found that ALCAM is a ligand for Th17-polarized cells, contributing to their capacity to adhere and induce damage to human oligodendrocytes, and therefore could represent a relevant target for neuroprotection in multiple sclerosis.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Humans , Mice , Animals , CD4-Positive T-Lymphocytes/metabolism , Activated-Leukocyte Cell Adhesion Molecule/metabolism , Cell Adhesion , Oligodendroglia/metabolism
2.
Brain ; 146(4): 1483-1495, 2023 04 19.
Article in English | MEDLINE | ID: mdl-36319587

ABSTRACT

The trafficking of autoreactive leucocytes across the blood-brain barrier endothelium is a hallmark of multiple sclerosis pathogenesis. Although the blood-brain barrier endothelium represents one of the main CNS borders to interact with the infiltrating leucocytes, its exact contribution to neuroinflammation remains understudied. Here, we show that Mcam identifies inflammatory brain endothelial cells with pro-migratory transcriptomic signature during experimental autoimmune encephalomyelitis. In addition, MCAM was preferentially upregulated on blood-brain barrier endothelial cells in multiple sclerosis lesions in situ and at experimental autoimmune encephalomyelitis disease onset by molecular MRI. In vitro and in vivo, we demonstrate that MCAM on blood-brain barrier endothelial cells contributes to experimental autoimmune encephalomyelitis development by promoting the cellular trafficking of TH1 and TH17 lymphocytes across the blood-brain barrier. Last, we showcase ST14 as an immune ligand to brain endothelial MCAM, enriched on CD4+ T lymphocytes that cross the blood-brain barrier in vitro, in vivo and in multiple sclerosis lesions as detected by flow cytometry on rapid autopsy derived brain tissue from multiple sclerosis patients. Collectively, our findings reveal that MCAM is at the centre of a pathological pathway used by brain endothelial cells to recruit pathogenic CD4+ T lymphocyte from circulation early during neuroinflammation. The therapeutic targeting of this mechanism is a promising avenue to treat multiple sclerosis.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Humans , Blood-Brain Barrier/pathology , Brain/pathology , CD146 Antigen/metabolism , CD4-Positive T-Lymphocytes/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Endothelial Cells/metabolism , Endothelium/metabolism , Endothelium/pathology , Multiple Sclerosis/pathology , Neuroinflammatory Diseases
3.
Sci Transl Med ; 14(626): eabj0473, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34985970

ABSTRACT

The migration of circulating leukocytes into the central nervous system (CNS) is a key driver of multiple sclerosis (MS) pathogenesis. The monoclonal antibody natalizumab proved that pharmaceutically obstructing this process is an effective therapeutic approach for treating relapsing-remitting MS (RRMS). Unfortunately, the clinical efficacy of natalizumab is somewhat offset by its incapacity to control the progressive forms of MS (PMS) and by life-threatening side effects in RRMS rising from the expression of its molecular target, very late antigen 4 (VLA4), on most immune cells and consequent impairment of CNS immunosurveillance. Here, we identified dual immunoglobulin domain containing cell adhesion molecule (DICAM) as a cell trafficking molecule preferentially expressed by T helper 17 (TH17)­polarized CD4+ T lymphocytes. We found that DICAM expression on circulating CD4+ T cells was increased in patients with active RRMS and PMS disease courses, and expression of DICAM ligands was increased on the blood-brain barrier endothelium upon inflammation and in MS lesions. Last, we demonstrated that pharmaceutically neutralizing DICAM reduced murine and human TH17 cell trafficking across the blood-brain barrier in vitro and in vivo, and alleviated disease symptoms in four distinct murine autoimmune encephalomyelitis models, including relapsing-remitting and progressive disease models. Collectively, our data highlight DICAM as a candidate therapeutic target to impede the migration of disease-inducing leukocytes into the CNS in both RRMS and PMS and suggest that blocking DICAM with a monoclonal antibody may be a promising therapeutic approach.


Subject(s)
Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Animals , Blood-Brain Barrier/metabolism , Cell Adhesion Molecules/metabolism , Humans , Mice , Multiple Sclerosis/drug therapy , Multiple Sclerosis/metabolism , Natalizumab/metabolism , Natalizumab/pharmacology , Natalizumab/therapeutic use , Neuroinflammatory Diseases , T-Lymphocytes/metabolism , Th17 Cells
4.
J Immunol ; 207(6): 1513-1521, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34400521

ABSTRACT

B cells have been implicated in the pathogenesis of multiple sclerosis, but the mechanisms that guide B cell activation in the periphery and subsequent migration to the CNS remain incompletely understood. We previously showed that systemic inflammation induces an accumulation of B cells in the spleen in a CCR6/CCL20-dependent manner. In this study, we evaluated the role of CCR6/CCL20 in the context of myelin oligodendrocyte glycoprotein (MOG) protein-induced (B cell-dependent) experimental autoimmune encephalomyelitis (EAE). We found that CCR6 is upregulated on murine B cells that migrate into the CNS during neuroinflammation. In addition, human B cells that migrate across CNS endothelium in vitro were found to be CCR6+, and we detected CCL20 production by activated CNS-derived human endothelial cells as well as a systemic increase in CCL20 protein during EAE. Although mice that lack CCR6 expression specifically on B cells exhibited an altered germinal center reaction in response to MOG protein immunization, CCR6-deficient B cells did not exhibit any competitive disadvantage in their migration to the CNS during EAE, and the clinical and pathological presentation of EAE induced by MOG protein was unaffected. These data, to our knowledge, provide new information on the role of B cell-intrinsic CCR6 expression in a B cell-dependent model of neuroinflammation.


Subject(s)
B-Lymphocytes/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Germinal Center/immunology , Immunization/methods , Myelin-Oligodendrocyte Glycoprotein/administration & dosage , Receptors, CCR6/deficiency , Animals , B-Lymphocytes/metabolism , Blood Donors , Blood-Brain Barrier/cytology , Blood-Brain Barrier/immunology , Cell Movement/genetics , Cell Movement/immunology , Cells, Cultured , Chemokine CCL20/metabolism , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Endothelial Cells/immunology , Female , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Myelin-Oligodendrocyte Glycoprotein/genetics , Receptors, CCR6/genetics , Recombinant Proteins/administration & dosage
5.
J Clin Invest ; 131(8)2021 04 15.
Article in English | MEDLINE | ID: mdl-33635833

ABSTRACT

Dysregulated immune profiles have been described in symptomatic patients infected with SARS-CoV-2. Whether the reported immune alterations are specific to SARS-CoV-2 infection or also triggered by other acute illnesses remains unclear. We performed flow cytometry analysis on fresh peripheral blood from a consecutive cohort of (a) patients hospitalized with acute SARS-CoV-2 infection, (b) patients of comparable age and sex hospitalized for another acute disease (SARS-CoV-2 negative), and (c) healthy controls. Using both data-driven and hypothesis-driven analyses, we found several dysregulations in immune cell subsets (e.g., decreased proportion of T cells) that were similarly associated with acute SARS-CoV-2 infection and non-COVID-19-related acute illnesses. In contrast, we identified specific differences in myeloid and lymphocyte subsets that were associated with SARS-CoV-2 status (e.g., elevated proportion of ICAM-1+ mature/activated neutrophils, ALCAM+ monocytes, and CD38+CD8+ T cells). A subset of SARS-CoV-2-specific immune alterations correlated with disease severity, disease outcome at 30 days, and mortality. Our data provide an understanding of the immune dysregulation specifically associated with SARS-CoV-2 infection among acute care hospitalized patients. Our study lays the foundation for the development of specific biomarkers to stratify SARS-CoV-2-positive patients at risk of unfavorable outcomes and to uncover candidate molecules to investigate from a therapeutic perspective.


Subject(s)
COVID-19/immunology , Leukocytes/classification , Leukocytes/immunology , SARS-CoV-2 , Acute Disease , Adult , Aged , B-Lymphocyte Subsets/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/epidemiology , COVID-19/mortality , Case-Control Studies , Cohort Studies , Female , Hospitalization , Humans , Lymphocyte Activation , Male , Middle Aged , Models, Immunological , Monocytes/immunology , Multivariate Analysis , Neutrophils/immunology , Pandemics , Prognosis , Prospective Studies , Quebec/epidemiology , Risk Factors , SARS-CoV-2/immunology , Severity of Illness Index
6.
Sci Transl Med ; 11(518)2019 11 13.
Article in English | MEDLINE | ID: mdl-31723036

ABSTRACT

The presence of B lymphocyte-associated oligoclonal immunoglobulins in the cerebrospinal fluid is a classic hallmark of multiple sclerosis (MS). The clinical efficacy of anti-CD20 therapies supports a major role for B lymphocytes in MS development. Although activated oligoclonal populations of pathogenic B lymphocytes are able to traffic between the peripheral circulation and the central nervous system (CNS) in patients with MS, molecular players involved in this migration have not yet been elucidated. In this study, we demonstrated that activated leukocyte cell adhesion molecule (ALCAM/CD166) identifies subsets of proinflammatory B lymphocytes and drives their transmigration across different CNS barriers in mouse and human. We also showcased that blocking ALCAM alleviated disease severity in animals affected by a B cell-dependent form of experimental autoimmune encephalomyelitis. Last, we determined that the proportion of ALCAM+ B lymphocytes was increased in the peripheral blood and within brain lesions of patients with MS. Our findings indicate that restricting access to the CNS by targeting ALCAM on pathogenic B lymphocytes might represent a promising strategy for the development of next-generation B lymphocyte-targeting therapies for the treatment of MS.


Subject(s)
Activated-Leukocyte Cell Adhesion Molecule/metabolism , B-Lymphocytes/cytology , Cell Movement , Central Nervous System/metabolism , Animals , Blood-Brain Barrier/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Endothelium/metabolism , Humans , Immunologic Memory , Mice, Knockout , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology , Myelin-Oligodendrocyte Glycoprotein/immunology , Recombinant Proteins/immunology , Severity of Illness Index
7.
JCI Insight ; 4(6)2019 03 21.
Article in English | MEDLINE | ID: mdl-30895941

ABSTRACT

TCR1640 mice, which have a T cell receptor (TCR) directed against MOG92-106, spontaneously develop experimental autoimmune encephalomyelitis. Female mice mostly develop a relapsing-remitting (RR) course and have a higher incidence of disease, while males most frequently suffer from progressive disease, reflecting the unresolved clinical sex discrepancies seen in multiple sclerosis. Herein, we performed adoptive transfers of male and female TCR1640 immune cells into WT animals to investigate if disease course is dependent on the sex of the donor immune cells or on the sex of the recipient animal. We found that transfer of female TCR1640 immune cells led to a RR disease while transfer of male TCR1640 immune cells led to a progressive course, independent of the sex of the recipient. In addition, regulatory and pathogenic T cell infiltration after transfer was also immune cell sex intrinsic. We performed genetic profiling of the donor immune cells and found significant differences between the transcriptomic profiles of male and female TCR1640 immune cells, interestingly, within genes related to immune regulation of T lymphocytes. These results suggest that differences in gene expression profiles related to regulation of T cell immunity seen in male and female neuroinflammatory disease drive relapsing versus progressive disease course.


Subject(s)
Demyelinating Diseases/genetics , Demyelinating Diseases/immunology , Disease Progression , Receptors, Antigen, T-Cell/immunology , Adoptive Transfer , Animals , Autoimmune Diseases/immunology , Blood-Brain Barrier/pathology , Disease Models, Animal , Female , Immunologic Factors , Male , Mice , Mice, Transgenic , Multiple Sclerosis/immunology , Phenotype , Receptors, Antigen, T-Cell/metabolism , Recurrence , Sex Factors , T-Lymphocytes/immunology , Transcriptome
8.
Cell Mol Immunol ; 16(7): 652-665, 2019 07.
Article in English | MEDLINE | ID: mdl-30635649

ABSTRACT

CD70 is the unique ligand of CD27 and is expressed on immune cells only upon activation. Therefore, engagement of the costimulatory CD27/CD70 pathway is solely dependent on upregulation of CD70. However, the T cell-intrinsic effect and function of human CD70 remain underexplored. Herein, we describe that CD70 expression distinguishes proinflammatory CD4+ T lymphocytes that display an increased potential to migrate into the central nervous system (CNS). Upregulation of CD70 on CD4+ T lymphocytes is induced by TGF-ß1 and TGF-ß3, which promote a pathogenic phenotype. In addition, CD70 is associated with a TH1 and TH17 profile of lymphocytes and is important for T-bet and IFN-γ expression by both T helper subtypes. Moreover, adoptive transfer of CD70-/-CD4+ T lymphocytes induced less severe experimental autoimmune encephalomyelitis (EAE) disease than transfer of WT CD4+ T lymphocytes. CD70+CD4+ T lymphocytes are found in the CNS during acute autoimmune inflammation in humans and mice, highlighting CD70 as both an immune marker and an important costimulator of highly pathogenic proinflammatory TH1/TH17 lymphocytes infiltrating the CNS.


Subject(s)
CD27 Ligand/metabolism , Central Nervous System/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Multiple Sclerosis/immunology , Th1 Cells/immunology , Th17 Cells/immunology , Adoptive Transfer , Animals , Cells, Cultured , Humans , Inflammation , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Signal Transduction , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism
9.
Sci Rep ; 8(1): 7551, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29765078

ABSTRACT

Stress granules (SGs) are cytoplasmic foci that form in response to various external stimuli and are essential to cell survival following stress. SGs are studied in several diseases, including ALS and FTD, which involve the degeneration of motor and cortical neurons, respectively, and are now realized to be linked pathogenically by TDP-43, originally discovered as a component of ubiquitin-positive aggregates within patients' neurons and some glial cells. So far, studies to undercover the role of TDP-43 in SGs have used primarily transformed cell lines, and thus rely on the extrapolation of the mechanisms to cell types affected in ALS/FTD, potentially masking cell specific effects. Here, we investigate SG dynamics in primary motor and cortical neurons as well as astrocytes. Our data suggest a cell and stress specificity and demonstrate a requirement for TDP-43 for efficient SG dynamics. In addition, based on our in vitro approach, our data suggest that aging may be an important modifier of SG dynamics which could have relevance to the initiation and/or progression of age-related neurodegenerative diseases.


Subject(s)
Astrocytes/cytology , Cerebral Cortex/cytology , Cytoplasmic Granules/metabolism , DNA-Binding Proteins/metabolism , Motor Neurons/cytology , Aging/genetics , Aging/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Animals , Astrocytes/metabolism , Cells, Cultured , Cerebral Cortex/metabolism , DNA-Binding Proteins/genetics , Down-Regulation , Fibroblasts/cytology , Fibroblasts/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Humans , Mice , Motor Neurons/metabolism , Oxidative Stress , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...