Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
2.
Pharmaceutics ; 14(3)2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35335931

ABSTRACT

Many active pharmaceutical ingredients (APIs) in the pharmaceutical pipeline require bioavailability enhancing formulations due to very low aqueous solubility. Although spray dried dispersions (SDDs) have demonstrated broad utility in enhancing the bioavailability of such APIs by trapping them in a high-energy amorphous form, many new chemical entities (NCEs) are poorly soluble not just in water, but in preferred organic spray drying solvents, e.g., methanol (MeOH) and acetone. Spraying poorly solvent soluble APIs from dilute solutions leads to low process throughput and small particles that challenge downstream processing. For APIs with basic pKa values, spray solvent solubility can be dramatically increased by using an acid to ionize the API. Specifically, we show that acetic acid can increase API solubility in MeOH:H2O by 10-fold for a weakly basic drug, gefitinib (GEF, pKa 7.2), by ionizing GEF to form the transient acetate salt. The acetic acid is removed during drying, resulting in a SDD of the original GEF free base having performance similar to SDDs sprayed from solvents without acetic acid. The increase in solvent solubility enables large scale manufacturing for these challenging APIs by significantly increasing the throughput and reducing the amount of solvent required.

3.
Mol Pharm ; 17(1): 180-189, 2020 01 06.
Article in English | MEDLINE | ID: mdl-31743032

ABSTRACT

Recently published studies have proposed that amorphous drug nanoparticles in gastrointestinal fluids may be beneficial for the absorption of poorly soluble compounds. Nanosized drug particles are known to provide rapid dissolution rates and, in some instances, a slight increase in solubility. However, in recent studies, the differences observed in vivo could not be explained solely by these attributes. Given the high dose and very low aqueous solubility of the study compounds, rapid equilibration to the drug-saturated solubility in gastrointestinal fluid would occur independent of the presence of nanoparticles. Alternatively, it has been proposed that drug nanoparticles (ca. ≤ 200 to 300 nm) may provide a "shuttle" for drug across the unstirred water layer (UWL) adjacent to the intestinal epithelium, particularly for low solubility/lipophilic compounds where absorption may be largely UWL-limited. This transport mechanism would result in a higher unbound drug concentration at the surface of the epithelium for absorption. This study evaluates this mechanism using a simple modification of the effective permeability to account for the effect of drug nanoparticles diffusing across the UWL. The modification can be made using inputs for solubility and nanoparticle size. The permeability modification was evaluated using three published case studies for amorphous formulations of itraconazole, anacetrapib, and enzalutamide, where the formation of amorphous drug nanoparticles upon dissolution resulted in improved drug absorption. Absorption modeling was performed using GastroPlus to assess the impact of the nanomodified permeability method on the accuracy of model prediction compared to in vivo data. Simulation results were compared to those for baseline simulations using an unmodified effective permeability. The results show good agreement using the nanomodified permeability, which described the data better than the standard baseline predictions. The nanomodified permeability method can be a suitable, fit-for-purpose in silico approach for evaluating or predicting oral absorption of poorly soluble, UWL-limited drugs from formulations that produce a significant number of amorphous drug nanoparticles.


Subject(s)
Itraconazole/pharmacokinetics , Oxazolidinones/pharmacokinetics , Phenylthiohydantoin/analogs & derivatives , Administration, Oral , Animals , Benzamides , Chemistry, Pharmaceutical , Colloids/pharmacology , Diffusion , Excipients/pharmacology , Humans , Intestinal Absorption , Itraconazole/administration & dosage , Itraconazole/blood , Itraconazole/chemistry , Models, Biological , Nanoparticles , Nitriles , Oxazolidinones/administration & dosage , Oxazolidinones/blood , Permeability , Phenylthiohydantoin/administration & dosage , Phenylthiohydantoin/blood , Phenylthiohydantoin/pharmacokinetics , Solubility
4.
Mol Pharm ; 14(7): 2437-2449, 2017 07 03.
Article in English | MEDLINE | ID: mdl-28591516

ABSTRACT

Improving the oral absorption of compounds with low aqueous solubility is a common challenge that often requires an enabling technology. Frequently, oral absorption can be improved by formulating the compound as an amorphous solid dispersion (ASD). Upon dissolution, an ASD can reach a higher concentration of unbound drug than the crystalline form, and often generates a large number of sub-micrometer, rapidly dissolving drug-rich colloids. These drug-rich colloids have the potential to decrease the diffusional resistance across the unstirred water layer of the intestinal tract (UWL) by acting as rapidly diffusing shuttles for unbound drug. In a prior study utilizing a membrane flux assay, we demonstrated that, for itraconazole, increasing the concentration of drug-rich colloids increased membrane flux in vitro. In this study, we evaluate spray-dried amorphous solid dispersions (SDDs) of itraconazole with hydroxypropyl methylcellulose acetate succinate (HPMCAS) to study the impact of varying concentrations of drug-rich colloids on the oral absorption of itraconazole in rats, and to quantify their impact on in vitro flux as a function of bile salt concentration. When Sporanox and itraconazole/AFFINISOL High Productivity HPMCAS SDDs were dosed in rats, the maximum absorption rate for each formulation rank-ordered with membrane flux in vitro. The relative maximum absorption rate in vivo correlated well with the in vitro flux measured in 2% SIF (26.8 mM bile acid concentration), a representative bile acid concentration for rats. In vitro it was found that as the bile salt concentration increases, the importance of colloids for improving UWL permeability is diminished. We demonstrate that drug-containing micelles and colloids both contribute to aqueous boundary layer diffusion in proportion to their diffusion coefficient and drug loading. These data suggest that, for compounds with very low aqueous solubility and high epithelial permeability, designing amorphous formulations that produce colloids on dissolution may be a viable approach to improve oral bioavailability.


Subject(s)
Colloids/chemistry , Itraconazole/chemistry , Methylcellulose/analogs & derivatives , Animals , Calorimetry, Differential Scanning , Male , Methylcellulose/chemistry , Micelles , Rats , Rats, Sprague-Dawley
5.
Mol Pharm ; 14(6): 2032-2046, 2017 06 05.
Article in English | MEDLINE | ID: mdl-28441497

ABSTRACT

Bioavailability-enhancing formulations are often used to overcome challenges of poor gastrointestinal solubility for drug substances developed for oral administration. Conventional in vitro dissolution tests often do not properly compare such formulations due to the many different drug species that may exist in solution. To overcome these limitations, we have designed a practical in vitro membrane flux test, that requires minimal active pharmaceutical ingredient (API) and is capable of rapidly screening many drug product intermediates. This test can be used to quickly compare performance of bioavailability-enhancing formulations with fundamental knowledge of the rate-limiting step(s) to membrane flux. Using this system, we demonstrate that the flux of amorphous itraconazole (logD = 5.7) is limited by aqueous boundary layer (ABL) diffusion and can be increased by adding drug-solubilizing micelles or drug-rich colloids. Conversely, the flux of crystalline ketoconazole at pH 5 (logD = 2.2) is membrane-limited, and adding solubilizing micelles does not increase flux. Under certain circumstances, the flux of ketoconazole may also be limited by dissolution rate. These cases highlight how a well-designed in vitro assay can provide critical insight for oral formulation development. Knowing whether flux is limited by membrane diffusion, ABL diffusion, or dissolution rate can help drive formulation development decisions. It may also be useful in predicting in vivo performance, dose linearity, food effects, and regional-dependent flux along the length of the gastrointestinal tract.


Subject(s)
Drug Compounding/methods , Administration, Oral , Biological Availability , Colloids/chemistry , Itraconazole/chemistry , Ketoconazole/chemistry , Micelles , Solubility
6.
J Am Chem Soc ; 135(31): 11572-9, 2013 Aug 07.
Article in English | MEDLINE | ID: mdl-23822749

ABSTRACT

Through the use of ambient pressure X-ray photoelectron spectroscopy (APXPS) and a single-sided solid oxide electrochemical cell (SOC), we have studied the mechanism of electrocatalytic splitting of water (H2O + 2e(-) → H2 + O(2-)) and electro-oxidation of hydrogen (H2 + O(2-) → H2O + 2e(-)) at ∼700 °C in 0.5 Torr of H2/H2O on ceria (CeO2-x) electrodes. The experiments reveal a transient build-up of surface intermediates (OH(-) and Ce(3+)) and show the separation of charge at the gas-solid interface exclusively in the electrochemically active region of the SOC. During water electrolysis on ceria, the increase in surface potentials of the adsorbed OH(-) and incorporated O(2-) differ by 0.25 eV in the active regions. For hydrogen electro-oxidation on ceria, the surface concentrations of OH(-) and O(2-) shift significantly from their equilibrium values. These data suggest that the same charge transfer step (H2O + Ce(3+) <-> Ce(4+) + OH(-) + H(•)) is rate limiting in both the forward (water electrolysis) and reverse (H2 electro-oxidation) reactions. This separation of potentials reflects an induced surface dipole layer on the ceria surface and represents the effective electrochemical double layer at a gas-solid interface. The in situ XPS data and DFT calculations show that the chemical origin of the OH(-)/O(2-) potential separation resides in the reduced polarization of the Ce-OH bond due to the increase of Ce(3+) on the electrode surface. These results provide a graphical illustration of the electrochemically driven surface charge transfer processes under relevant and nonultrahigh vacuum conditions.

7.
J Chem Phys ; 138(21): 214304, 2013 Jun 07.
Article in English | MEDLINE | ID: mdl-23758368

ABSTRACT

In this paper, we investigate uniformly dispersed size-selected Pd(n) clusters (n = 4, 10, and 17) on alumina supports. We study the changes of clustered Pd atoms under oxidizing and reducing (O2 and CO, respectively) conditions in situ using ambient pressure XPS. The behavior of Pd in the clusters is quite different from that of Pd foil under the same conditions. For all Pd clusters, we observe only one Pd peak. The binding energy of this Pd 3d peak is ~1-1.4 eV higher than that of metallic Pd species and changes slightly in CO and O2 environments. On the Pd foil however many different Pd species co-exist on the surface and change their oxidation states under different conditions. We find that the Pd atoms in direct contact with Al2O3 differ in oxidation state from the surface Pd atoms in a foil under reaction conditions. Compared to previous literature, we find that Pd 3d peak positions are greatly influenced by the different types of Al2O3 supports due to the combination of both initial and final state effects.

8.
Sci Rep ; 3: 1510, 2013.
Article in English | MEDLINE | ID: mdl-23528851

ABSTRACT

The recent discovery of "black" TiO2 nanoparticles with visible and infrared absorption has triggered an explosion of interest in the application of TiO2 in a diverse set of solar energy systems; however, what a black TiO2 nanoparticle really is remains a mystery. Here we elucidate more properties and try to understand the inner workings of black TiO2 nanoparticles with hydrogenated disorders in a surface layer surrounding a crystalline core. Contrary to traditional findings, Ti(3+) here is not responsible for the visible and infrared absorption of black TiO2, while there is evidence of mid-gap states above the valence band maximum due to the hydrogenated, engineered disorders. The hydrogen atoms, on the other hand, can undergo fast diffusion and exchange. The enhanced hydrogen mobility may be explained by the presence of the hydrogenated, disordered surface layer. This unique structure thus may give TiO2, one of the most-studied oxide materials, a renewed potential.


Subject(s)
Hydrogen/chemistry , Nanoparticles/chemistry , Titanium/chemistry , Hydrogenation , Magnetic Resonance Spectroscopy , Microscopy, Electron, Transmission , Nanoparticles/ultrastructure , Spectrometry, X-Ray Emission , Spectrophotometry , Surface Properties , Synchrotrons , X-Ray Absorption Spectroscopy
9.
Phys Chem Chem Phys ; 14(14): 4796-801, 2012 Apr 14.
Article in English | MEDLINE | ID: mdl-22361687

ABSTRACT

The structure and chemical composition of Pd nanoparticles exposed to pure CO and mixtures of CO and O(2) at elevated temperatures have been studied in situ by a combination of X-ray Diffraction and X-ray Photoelectron Spectroscopy in pressures ranging from ultra high vacuum to 10 mbar and from room temperature to a few hundred degrees celsius. Our investigation shows that under CO exposure, above a certain temperature, carbon dissolves into the Pd particles forming a carbide phase. Upon exposure to CO and O(2) mixtures, the carbide phase forms and disappears reversibly, switching at the stoichiometric ratio for CO oxidation. This finding opens new scenarios for the understanding of catalytic oxidation of C-based molecules.

10.
J Am Chem Soc ; 133(50): 20319-25, 2011 Dec 21.
Article in English | MEDLINE | ID: mdl-22070406

ABSTRACT

Many interesting structures have been observed for O(2)-exposed Pt(110). These structures, along with their stability and reactivity toward CO, provide insights into catalytic processes on open Pt surfaces, which have similarities to Pt nanoparticle catalysts. In this study, we present results from ambient-pressure X-ray photoelectron spectroscopy, high-pressure scanning tunneling microscopy, and density functional theory calculations. At low oxygen pressure, only chemisorbed oxygen is observed on the Pt(110) surface. At higher pressure (0.5 Torr of O(2)), nanometer-sized islands of multilayered α-PtO(2)-like surface oxide form along with chemisorbed oxygen. Both chemisorbed oxygen and the surface oxide are removed in the presence of CO, and the rate of disappearance of the surface oxide is close to that of the chemisorbed oxygen at 270 K. The spectroscopic features of the surface oxide are similar to the oxide observed on Pt nanoparticles of a similar size, which provides us an extra incentive to revisit some single-crystal model catalyst surfaces under elevated pressure using in situ tools.

11.
J Am Chem Soc ; 133(17): 6659-67, 2011 May 04.
Article in English | MEDLINE | ID: mdl-21473591

ABSTRACT

The coadsorption of water with organic molecules under near-ambient pressure and temperature conditions opens up new reaction pathways on model catalyst surfaces that are not accessible in conventional ultrahigh-vacuum surface-science experiments. The surface chemistry of glycine and alanine at the water-exposed Cu{110} interface was studied in situ using ambient-pressure photoemission and X-ray absorption spectroscopy techniques. At water pressures above 10(-5) Torr a significant pressure-dependent decrease in the temperature for dissociative desorption was observed for both amino acids, accompanied by the appearance of a new CN intermediate, which is not observed for lower pressures. The most likely reaction mechanisms involve dehydrogenation induced by O and/or OH surface species resulting from the dissociative adsorption of water. The linear relationship between the inverse decomposition temperature and the logarithm of water pressure enables determination of the activation energy for the surface reaction, between 213 and 232 kJ/mol, and a prediction of the decomposition temperature at the solid-liquid interface by extrapolating toward the equilibrium vapor pressure. Such experiments near the equilibrium vapor pressure provide important information about elementary surface processes at the solid-liquid interface, which can be retrieved neither under ultrahigh vacuum conditions nor from interfaces immersed in a solution.


Subject(s)
Alanine/chemistry , Copper/chemistry , Glycine/chemistry , Adsorption , Steam , Surface Properties , X-Ray Absorption Spectroscopy
12.
Phys Chem Chem Phys ; 13(7): 2556-62, 2011 Feb 21.
Article in English | MEDLINE | ID: mdl-21183987

ABSTRACT

Bimetallic 15 nm Rh(1-x)Pd(x) nanoparticle catalysts of five different compositions and supported on Si wafers have been synthesized, characterized using TEM, SEM, and XPS, and studied in CO oxidation by O(2) in two pressure regimes: atmospheric pressure and 100-200 mTorr. The RhPd bimetallic nanocrystals exhibited similar synergetic effect of increased reaction activity at both atmospheric (760 Torr) and moderate (100-200 mTorr) pressures compared with pure Pd or Rh. The magnitude of the effect depends on the relative pressures of the CO and O(2) reactant gases and the reaction temperature. The catalytic activity of the nanocrystals measured at moderate pressure is directly correlated to the APXPS studies, which were carried out in the same pressure. The APXPS studies suggest that the Pd-Rh interfaces are important for the enhanced activity of the bimetallic nanoparticles.

13.
Nat Mater ; 9(11): 944-9, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20871607

ABSTRACT

Photoelectron spectroscopic measurements have the potential to provide detailed mechanistic insight by resolving chemical states, electrochemically active regions and local potentials or potential losses in operating solid oxide electrochemical cells (SOCs), such as fuel cells. However, high-vacuum requirements have limited X-ray photoelectron spectroscopy (XPS) analysis of electrochemical cells to ex situ investigations. Using a combination of ambient-pressure XPS and CeO(2-x)/YSZ/Pt single-chamber cells, we carry out in situ spectroscopy to probe oxidation states of all exposed surfaces in operational SOCs at 750 °C in 1 mbar reactant gases H(2) and H(2)O. Kinetic energy shifts of core-level photoelectron spectra provide a direct measure of the local surface potentials and a basis for calculating local overpotentials across exposed interfaces. The mixed ionic/electronic conducting CeO(2-x) electrodes undergo Ce(3+)/Ce(4+) oxidation-reduction changes with applied bias. The simultaneous measurements of local surface Ce oxidation states and electric potentials reveal the active ceria regions during H(2) electro-oxidation and H(2)O electrolysis. The active regions extend ~150 µm from the current collectors and are not limited by the three-phase-boundary interfaces associated with other SOC materials. The persistence of the Ce(3+)/Ce(4+) shifts in the ~150 µm active region suggests that the surface reaction kinetics and lateral electron transport on the thin ceria electrodes are co-limiting processes.

14.
Rev Sci Instrum ; 81(8): 086104, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20815633

ABSTRACT

We describe a fixture that allows electrochemical devices to be studied under electrical bias in the type of vacuum systems commonly used in surface science. Three spring-loaded probes provide independent contacts for device operation and the characterization in vacuum or under in situ conditions with reactive gases. We document the robustness of the electrical contacts over large temperature changes and their reliability for conventional electrochemical measurements such as impedance spectroscopy. The optical access provided to the device enables the analysis by many techniques, as we demonstrate using x-ray photoelectron spectroscopy to measure local electrical potentials on a solid-oxide electrolyte device operating at high temperature in near-ambient pressure.

15.
Rev Sci Instrum ; 81(5): 053106, 2010 May.
Article in English | MEDLINE | ID: mdl-20515123

ABSTRACT

During the past decade, the application of ambient pressure photoemission spectroscopy (APPES) has been recognized as an important in situ tool to study environmental and materials science, energy related science, and many other fields. Several APPES endstations are currently under planning or development at the USA and international light sources, which will lead to a rapid expansion of this technique. The present work describes the design and performance of a new APPES instrument at the Advanced Light Source beamline 9.3.2 at Lawrence Berkeley National Laboratory. This new instrument, Scienta R4000 HiPP, is a result of collaboration between Advanced Light Source and its industrial partner VG-Scienta. The R4000 HiPP provides superior electron transmission as well as spectromicroscopy modes with 16 microm spatial resolution in one dimension and angle-resolved modes with simulated 0.5 degrees angular resolution at 24 degrees acceptance. Under maximum transmission mode, the electron detection efficiency is more than an order of magnitude better than the previous endstation at beamline 9.3.2. Herein we describe the design and performance of the system, which has been utilized to record spectra above 2 mbar.

16.
J Am Chem Soc ; 132(25): 8697-703, 2010 Jun 30.
Article in English | MEDLINE | ID: mdl-20521788

ABSTRACT

Three series of bimetallic nanoparticle catalysts (Rh(x)Pd(1-x), Rh(x)Pt(1-x), and Pd(x)Pt(1-x), x = 0.2, 0.5, 0.8) were synthesized using one-step colloidal chemistry. X-ray photoelectron spectroscopy (XPS) depth profiles using different X-ray energies and scanning transmission electron microscopy showed that the as-synthesized Rh(x)Pd(1-x) and Pd(x)Pt(1-x) nanoparticles have a core-shell structure whereas the Rh(x)Pt(1-x) alloys are more homogeneous in structure. The evolution of their structures and chemistry under oxidizing and reducing conditions was studied with ambient-pressure XPS (AP-XPS) in the Torr pressure range. The Rh(x)Pd(1-x) and Rh(x)Pt(1-x) nanoparticles undergo reversible changes of surface composition and chemical state when the reactant gases change from oxidizing (NO or O(2) at 300 degrees C) to reducing (H(2) or CO at 300 degrees C) or catalytic (mixture of NO and CO at 300 degrees C). In contrast, no significant change in the distribution of the Pd and Pt atoms in the Pd(x)Pt(1-x) nanoparticles was observed. The difference in restructuring behavior under these reaction conditions in the three series of bimetallic nanoparticle catalysts is correlated with the surface free energy of the metals and the heat of formation of the metallic oxides. The observation of structural evolution of bimetallic nanoparticles under different reaction conditions suggests the importance of in situ studies of surface structures of nanoparticle catalysts.

17.
Langmuir ; 26(21): 16362-7, 2010 Nov 02.
Article in English | MEDLINE | ID: mdl-20575545

ABSTRACT

We present an in situ study of the interaction of a bimetallic Rh(0.5)Pd(0.5) bulk crystal with O(2), CO, and NO using ambient pressure X-ray photoelectron spectroscopy (APXPS) and compare it to results for 15 nm nanoparticles with the same overall composition. The bulk crystal surface has less Rh present under both oxidizing and reducing conditions than the surface of nanoparticles under identical conditions. Segregation and oxidation/reduction proceeds faster and at lower temperature for nanoparticles than for the bulk crystal. The near surface of the Rh(0.5)Pd(0.5) bulk crystal after high temperature vacuum annealing is ca. 9% Rh measured by APXPS. Heating in 0.1 Torr O(2) to 350 °C increases the Rh surface composition to ca. 40%. The surface can then be reduced by heating in H(2) at 150 °C, leading to a chemically reduced surface with 30% Rh. Titration of CO by gas-phase O(2) from this Rh-rich surface proceeds at a much lower pressure than that on the Rh-deficient starting surface.


Subject(s)
Carbon Monoxide/chemistry , Metal Nanoparticles/chemistry , Nitric Oxide/chemistry , Oxygen/chemistry , Palladium/chemistry , Rhenium/chemistry , Adsorption , Alloys/chemistry , Particle Size , Surface Properties
18.
Langmuir ; 26(21): 16463-8, 2010 Nov 02.
Article in English | MEDLINE | ID: mdl-20443537

ABSTRACT

Monodisperse sub-10 nm (6.5 nm) sized Rh nanocrystals with (111) and (100) surface structures were synthesized by a seedless polyol reduction in ethylene glycol, with poly(vinylpyrrolidone) as a capping ligand. When using [Rh(Ac)(2)](2) as the metal precursor, (111)-oriented Rh nanopolyhedra containing 76% (111)-twinned hexagons (in 2D projection) were obtained; whereas, when employing RhCl(3) as the metal precursor in the presence of alkylammonium bromide, such as tetramethylammonium bromide and trimethyl(tetradecyl)ammonium bromide, (100)-oriented Rh nanocubes were obtained with 85% selectivity. The {100} faces of the Rh nanocrystals are stabilized by chemically adsorbed Br(-) ions from alkylammonium bromides, which led to (100)-oriented nanocubes. Monolayer films of the (111)-oriented Rh nanopolyhedra and (100)-oriented Rh nanocubes were deposited on silicon wafers in a Langmuir-Blodgett trough to make model 2D nanoarray catalysts. These nanocatalysts were active for CO oxidation by O(2), and the turnover frequency was independent of nanoparticle shape, consistent with that previously observed for Rh(111) and Rh(100) single crystals.


Subject(s)
Carbon Monoxide/chemistry , Metal Nanoparticles/chemistry , Organometallic Compounds/chemistry , Polymers/chemical synthesis , Rhodium/chemistry , Adsorption , Organometallic Compounds/chemical synthesis , Oxidation-Reduction , Particle Size , Polymers/chemistry , Surface Properties
20.
Science ; 322(5903): 932-4, 2008 Nov 07.
Article in English | MEDLINE | ID: mdl-18845713

ABSTRACT

Heterogeneous catalysts that contain bimetallic nanoparticles may undergo segregation of the metals, driven by oxidizing and reducing environments. The structure and composition of core-shell Rh(0.5)Pd(0.5) and Pt(0.5)Pd(0.5) nanoparticle catalysts were studied in situ, during oxidizing, reducing, and catalytic reactions involving NO, O2, CO, and H2 by x-ray photoelectron spectroscopy at near-ambient pressure. The Rh(0.5)Pd(0.5) nanoparticles underwent dramatic and reversible changes in composition and chemical state in response to oxidizing or reducing conditions. In contrast, no substantial segregation of Pd or Pt atoms was found in Pt(0.5)Pd(0.5) nanoparticles. The different behaviors in restructuring and chemical response of Rh(0.5)Pd(0.5) and Pt(0.5)Pd(0.5) nanoparticle catalysts under the same reaction conditions illustrates the flexibility and tunability of the structure of bimetallic nanoparticle catalysts during catalytic reactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...