Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
BMC Plant Biol ; 22(1): 338, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35831782

ABSTRACT

BACKGROUND: Boron (B) nutritional disorders, either deficiency or toxicity, may lead to an increase in reactive oxygen species production, causing damage to cells. Oxidative damage in leaves can be attenuated by supplying silicon (Si). The aim of this study was to assess the effect of increasing foliar B accumulation on cotton plants to determine whether adding Si to the spray solution promotes gains to correct deficiency and toxicity of this micronutrient by decreasing oxidative stress via synthetizing proline and glycine-betaine, thereby raising dry matter production. RESULTS: B deficiency or toxicity increased H2O2 and MDA leaf concentration in cotton plants. H2O2 and MDA leaf concentration declined, with quadratic adjustment, as a function of increased leaf B accumulation. Proline and glycine-betaine leaf concentration increased under B-deficiency and B-toxicity. In addition, production of these nonenzymatic antioxidant compounds was greater in plants under toxicity, in relation to deficient plants. Adding Si to the B spray solution reduced H2O2 and MDA concentration in the plants under nutrient deficiency or toxicity. Si reduced H2O2, primarily in B-deficient plants. Si also increased proline and glycine-betaine concentration, mainly in plants under B toxicity. Dry matter production of B-deficient cotton plants increased up to an application of 1.2 g L- 1 of B. The critical B level in the spray solution for deficiency and toxicity was observed at a concentration of 0.5 and 1.9 g L- 1 of B, respectively, in the presence of Si, and 0.4 and 1.9 g L- 1 of B without it. In addition, the presence of Si in the B solution raised dry matter production in all B concentrations evaluated in this study. CONCLUSION: Our findings demonstrated that adding Si to a B solution is important in the foliar spraying of cotton plants because it increases proline and glycine-betaine production and reduces H2O2 and MDA concentration, in addition to mitigating the oxidative stress in cotton plants under B deficiency or toxicity.


Subject(s)
Antioxidants , Silicon , Betaine , Boron/toxicity , Glycine/pharmacology , Gossypium , Hydrogen Peroxide , Plant Leaves , Proline , Silicon/pharmacology
2.
J Sci Food Agric ; 102(2): 801-812, 2022 Jan 30.
Article in English | MEDLINE | ID: mdl-34223643

ABSTRACT

BACKGROUND: Sunscald is a physiological disorder that occurs in many horticultural products when exposed to excessive solar radiation and high temperatures. Traditionally, sunscald is controlled using physical barriers that reflect radiation, however this practice is not always efficient. A possible alternative would be the use of chemical barriers, such as mycosporine-like amino acids (MAAs), which protect aquatic organisms against ultraviolet (UV) radiation. Thus, this study aimed to develop a lipid-based emulsion containing MAAs for using in the preharvest of horticultural products. RESULTS: Emulsions were developed using 10% (w/v) of corn oil (CO) and soybean oil (SO), carnauba wax (CW), and beeswax (BW) as lipid bases (LBs). The emulsion containing CW and ammonium hydroxide was the most stable, resembling commercial wax. Therefore, this formulation was used as the basis for the incorporation of the commercial product Helioguard™ 365, a source of MAA, in concentrations of 0%, 1%, 2%, and 4% (v/v). The MAA incorporation resulted in little modifications in the stability of the emulsion, providing an increase in the absorbance with peaks in the UV-B ranging from 280 to 300 nm. CONCLUSION: The lipid-base emulsion containing MAAs could be used as a chemical barrier to control sunscald in horticultural products. © 2021 Society of Chemical Industry.


Subject(s)
Amino Acids/chemistry , Amino Acids/pharmacology , Cyclohexanols/chemistry , Fruit/radiation effects , Protective Agents/pharmacology , Vegetables/radiation effects , Cyclohexanols/pharmacology , Emulsions/chemistry , Emulsions/pharmacology , Protective Agents/chemistry , Radiation-Protective Agents , Ultraviolet Rays
3.
Physiol Plant ; 165(2): 413-426, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30552688

ABSTRACT

Agricultural activities are affected by many biotic and abiotic stresses associated with global climate change. Predicting the response of plants to abiotic stress under future climate scenarios requires an understanding of plant biochemical performance in simulated stress conditions. In this study, the antioxidant response of Panicum maximum Jacq. cv. Mombaça exposed to warming (+2°C above ambient temperature) (eT), water deficit (wS) and the combination eT + wS was analysed under field conditions using a temperature free-air-controlled enhancement facility. Warming was applied during the entire growth period. Data were collected at 13, 19 and 37 days after the start of the water deficit treatment (DAT) and at two sampling times (6:00 and 12:00 h). A significant decrease in chlorophyll was observed under the wS treatment, but an increment in total chlorophyll was observed in eT + wS, particularly at 19 DAT. Significant increase in H2 O2 content, malondialdehyde and protein oxidation was observed in the wS treatment at noon of the third sampling. In the combined wS + eT stress treatment, the activity of the enzymatic antioxidant system increased, particularly of superoxide dismutase (SOD; EC 1.15.1.1) and ascorbate peroxidase (APX; EC 1.11.1.11). The chlorophyll fluorescence images showed that the photochemical performance was not significantly affected by the treatments. In conclusion, under simulated future warming and water stress conditions, the photosystem II (PSII) activity of P. maximum acclimated to moderate warming and a water-stressed environment associated with a relatively favourable antioxidant response, particularly in the activity of APX and SOD.


Subject(s)
Antioxidants/metabolism , Global Warming , Panicum/metabolism , Water/metabolism , Air , Ascorbate Peroxidases/metabolism , Fluorescence , Glutathione/metabolism , Glutathione Reductase/metabolism , Hydrogen Peroxide/metabolism , Lipid Peroxidation , Malondialdehyde/metabolism , Microclimate , Oxidation-Reduction , Photosystem II Protein Complex/metabolism , Pigments, Biological/metabolism , Plant Leaves/metabolism , Plant Leaves/physiology , Rain , Superoxide Dismutase/metabolism , Temperature
4.
Protoplasma ; 254(2): 771-783, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27263082

ABSTRACT

There is a very effective cross-talk between signals triggered by reactive oxygen species and hormonal responses in plants, activating proteins/enzymes likely to be involved in stress tolerance. Abscisic acid (ABA) is known as a stress hormone that takes part in the integration of signals. This work aimed to characterize the biochemical response and ultrastructural changes induced by cadmium (Cd) in the Micro-Tom (MT) sitiens ABA-deficient mutant (sit) and its wild-type (MT) counterpart. MT and sit plants were grown over a 96-h period in the presence of Cd (0, 10, and 100 µM CdCl2). The overall results indicated increases in lipid peroxidation, hydrogen peroxide content and in the activities of the key antioxidant enzymes such as catalase, glutathione reductase, and ascorbate peroxidase in both genotypes. On the other hand, no alteration was observed in chlorophyll content, while the activity of another antioxidant enzyme, superoxide dismutase, remained constant or even decreased in the presence of Cd. Roots and shoots of the sit mutant and MT were analyzed by light and transmission electron microscopy in order to characterize the structural changes caused by the exposure to this metal. Cd caused a decrease in intercellular spaces in shoots and a decrease in cell size in roots of both genotypes. In leaves, Cd affected organelle shape and internal organization of the thylakoid membranes, whereas noticeable increase in the number of mitochondria and vacuoles in MT and sit roots were observed. These results add new information that should help unravel the relative importance of ABA in regulating the cell responses to stressful conditions induced by Cd apart from providing the first characterization of this mutant to oxidative stress.


Subject(s)
Abscisic Acid/metabolism , Cadmium/toxicity , Genes, Plant , Mutation/genetics , Solanum lycopersicum/genetics , Solanum lycopersicum/physiology , Stress, Physiological/drug effects , Biomass , Catalase/metabolism , Chlorophyll/metabolism , Chloroplasts/drug effects , Chloroplasts/metabolism , Chloroplasts/ultrastructure , Lipid Peroxidation/drug effects , Solanum lycopersicum/drug effects , Malondialdehyde/metabolism , Meristem/cytology , Meristem/drug effects , Meristem/metabolism , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Shoots/drug effects , Plant Shoots/metabolism , Superoxide Dismutase/metabolism
5.
Plant Physiol Biochem ; 56: 79-96, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22609458

ABSTRACT

In order to further address the modulation of signaling pathways of stress responses and their relation to hormones, we used the ethylene-insensitive Never ripe (Nr) and the auxin-insensitive diageotropica (dgt) tomato mutants. The two mutants and the control Micro-Tom (MT) cultivar were grown over a 40-day period in the presence of Cd (0.2 mM CdCl2 and 1 mM CdCl2). Lipid peroxidation, leaf chlorophyll, proline content, Cd content and antioxidant enzyme activities in roots, leaves and fruits were determined. The overall results indicated that the MT genotype had the most pronounced Cd damage effects while Nr and dgt genotypes might withstand or avoid stress imposed by Cd. This fact may be attributed, at least in part, to the fact that the known auxin-stimulated ethylene production is comprised in dgt plants. Conversely, the Nr genotype was more affected by the Cd imposed stress than dgt, which may be explained by the fact that Nr retains a partial sensitivity to ethylene. These results add further information that should help unraveling the relative importance of ethylene in regulating the cell responses to stressful conditions.


Subject(s)
Adaptation, Physiological/genetics , Cadmium/adverse effects , Ethylenes/metabolism , Genes, Plant , Mutation , Solanum lycopersicum/drug effects , Stress, Physiological/genetics , Genotype , Indoleacetic Acids/metabolism , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Plant Growth Regulators/genetics , Plant Growth Regulators/metabolism , Plant Structures/drug effects , Plant Structures/metabolism , Signal Transduction
6.
An Acad Bras Cienc ; 84(2): 573-85, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22522674

ABSTRACT

Biochemical responses inherent to antioxidant systems as well morphological and anatomical properties of photomorphogenic, hormonal and developmental tomato mutants were investigated. Compared to the non-mutant Micro-Tom (MT), we observed that the malondialdehyde (MDA) content was enhanced in the diageotropica (dgt) and lutescent (l) mutants, whilst the highest levels of hydrogen peroxide (H(2)O(2)) were observed in high pigment 1 (hp1) and aurea (au) mutants. The analyses of antioxidant enzymes revealed that all mutants exhibited reduced catalase (CAT) activity when compared to MT. Guaiacol peroxidase (GPOX) was enhanced in both sitiens (sit) and notabilis (not) mutants, whereas in not mutant there was an increase in ascorbate peroxidase (APX). Based on PAGE analysis, the activities of glutathione reductase (GR) isoforms III, IV, V and VI were increased in l leaves, while the activity of superoxide dismutase (SOD) isoform III was reduced in leaves of sit, epi, Never ripe (Nr) and green flesh (gf) mutants. Microscopic analyses revealed that hp1 and au showed an increase in leaf intercellular spaces, whereas sit exhibited a decrease. The au and hp1 mutants also exhibited a decreased in the number of leaf trichomes. The characterization of these mutants is essential for their future use in plant development and ecophysiology studies, such as abiotic and biotic stresses on the oxidative metabolism.


Subject(s)
Antioxidants/metabolism , Oxidoreductases/genetics , Solanum lycopersicum/genetics , Electrophoresis, Polyacrylamide Gel , Solanum lycopersicum/enzymology , Solanum lycopersicum/ultrastructure , Microscopy, Electron, Scanning , Oxidoreductases/metabolism , Stress, Physiological/genetics
7.
Chemosphere ; 75(10): 1363-70, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19268339

ABSTRACT

The influence of arbuscular mycorrhizal fungi (AMF) inoculation on Canavalia ensiformis growth, nutrient and Zn uptake, and on some physiological parameters in response to increasing soil Zn concentrations was studied. Treatments were applied in seven replicates in a 2 x 4 factorial design, consisting of the inoculation or not with the AMF Glomus etunicatum, and the addition of Zn to soil at the concentrations of 0, 100, 300 and 900 mg kg(-1). AMF inoculation enhanced the accumulation of Zn in tissues and promoted biomass yields and root nodulation. Mycorrhizal plants exhibited relative tolerance to Zn up to 300 mg kg(-1) without exhibiting visual symptoms of toxicity, in contrast to non-mycorrhizal plants which exhibited a significant growth reduction at the same soil Zn concentration. The highest concentration of Zn added to soil was highly toxic to the plants. Leaves of plants grown in high Zn concentration exhibited a Zn-induced proline accumulation and also an increase in soluble amino acid contents; however proline contents were lower in mycorrhizal jack beans. Plants in association or not with the AMF exhibited marked differences in the foliar soluble amino acid profile and composition in response to Zn addition to soil. In general, Zn induced oxidative stress which could be verified by increased lipid peroxidation rates and changes in catalase, ascorbate peroxidase, glutathione reductase and superoxide dismutase activities. In summary, G. etunicatum was able to maintain an efficient symbiosis with jack bean plants in moderately contaminated Zn-soils, improving plant performance under those conditions, which is likely to be due to a combination of physiological and nutritional changes caused by the intimate relation between fungus and plant. The enhanced Zn uptake by AMF inoculated jack bean plants might be of interest for phytoremediation purposes.


Subject(s)
Canavalia/metabolism , Mycorrhizae/metabolism , Soil Microbiology , Soil Pollutants/metabolism , Zinc/metabolism , Antioxidants/metabolism , Biodegradation, Environmental , Canavalia/growth & development , Canavalia/microbiology , Plant Leaves/metabolism , Plant Proteins/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/microbiology , Soil Pollutants/toxicity , Zinc/toxicity
8.
Funct Plant Biol ; 34(5): 449-456, 2007 Jun.
Article in English | MEDLINE | ID: mdl-32689372

ABSTRACT

Selenium (Se) is an essential element for humans and animals that is required for key antioxidant reactions, but can be toxic at high concentrations. We have investigated the effect of Se in the form of selenite on coffee cell suspension cultures over a 12-day period. The antioxidant defence systems were induced in coffee cells grown in the presence of 0.05 and 0.5 mm sodium selenite (Na2SeO3). Lipid peroxidation and alterations in antioxidant enzymes were the main responses observed, including a severe reduction in ascorbate peroxidase activity, even at 0.05 mm sodium selenite. Ten superoxide dismutase (SOD) isoenzymes were detected and the two major Mn-SOD isoenzymes (bands V and VI) responded more to 0.05 mm selenite. SOD band V exhibited a general decrease in activity after 12 h of treatment with 0.05 mm selenite, whereas band VI exhibited the opposite behavior and increased in activity. An extra isoenzyme of glutathione reductase (GR) was induced in the presence of selenite, which confirmed our previous results obtained with Cd and Ni indicating that this GR isoenzyme may have the potential to be a marker for oxidative stress in coffee.

9.
Chemosphere ; 65(8): 1330-7, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16762393

ABSTRACT

The antioxidant responses of coffee (Coffea arabica L.) cell suspension cultures to cadmium (Cd) were investigated. Cd accumulated very rapidly in the cells and this accumulation was directly correlated with an increase in applied CdCl(2) concentration in the external medium. At 0.05mM CdCl(2), growth was stimulated, but at 0.5mM CdCl(2), the growth rate was reduced. An alteration in activated oxygen metabolism was detected by visual analysis as well as by an increase in lipid peroxidation at the higher CdCl(2) concentration. Catalase (CAT; EC 1.11.1.6), glutathione reductase (GR; EC 1.6.4.2) and superoxide dismutase (SOD; EC 1.15.1.1) activity increased, particularly at the higher concentration of CdCl(2). Ascorbate peroxidase (APX; EC 1.11.1.11) activity was increased at the lower CdCl(2) concentration used, but could not be detected in cells growing in the higher CdCl(2) concentration after 24h of growth, whilst guaiacol peroxidase (GOPX; EC 1.11.1.7) did not show a clear response to Cd treatment. An analysis by non-denaturing PAGE followed by staining for enzyme activity, revealed one CAT isoenzyme, nine SOD isoenzymes and four GR isoenzymes. The SOD isoenzymes were differently affected by CdCl(2) treatment and one GR isoenzyme was shown to specifically respond to CdCl(2). The results suggest that the higher concentrations of CdCl(2) may lead to oxidative stress. The main response appears to be via the induction of SOD and CAT activities for the removal of reactive oxygen species (ROS), and by the induction of GR to ensure the availability of reduced glutathione for the synthesis of Cd-binding peptides, which may also be related to the inhibition of APX activity probably due to glutathione and ascorbate depletion.


Subject(s)
Antioxidants/metabolism , Cadmium/pharmacology , Coffea/cytology , Coffea/drug effects , Cadmium/metabolism , Catalase/metabolism , Cell Extracts , Cell Proliferation/drug effects , Cells, Cultured , Coffea/metabolism , Culture Media , Glutathione Reductase/metabolism , Isoenzymes/metabolism , Oxidative Stress , Superoxide Dismutase/metabolism
10.
Funct Plant Biol ; 32(6): 481-494, 2005 Jul.
Article in English | MEDLINE | ID: mdl-32689149

ABSTRACT

The contamination of soils and water with metals has created a major environmental problem, leading to considerable losses in plant productivity and hazardous health effects. Exposure to toxic metals can intensify the production of reactive oxygen species (ROS), which are continuously produced in both unstressed and stressed plants cells. Some of the ROS species are highly toxic and must be detoxified by cellular stress responses, if the plant is to survive and grow. The aim of this review is to assess the mode of action and role of antioxidants in protecting plants from stress caused by the presence of heavy metals in the environment.

11.
J Agric Food Chem ; 52(15): 4865-71, 2004 Jul 28.
Article in English | MEDLINE | ID: mdl-15264927

ABSTRACT

Two high lysine maize endosperm mutations, opaque-5 (o5) and opaque-7 (o7), were biochemically characterized for endosperm protein synthesis and lysine metabolism in immature seeds. Albumins, globulins, and glutelins, which have a high content of lysine, were shown to be increased in the mutants, whereas zeins, which contain trace concentrations of lysine, were reduced in relation to the wild-type lines B77xB79+ and B37+. These alterations in the storage protein fraction distribution possibly explain the increased concentration of lysine in the two mutants. Using two-dimensional polyacrylamide gel electrophoresis of proteins of mature grains, variable amounts of zein polypeptides were detected and considerable differences were noted between the four lines studied. The analysis of the enzymes involved in lysine metabolism indicated that both mutants have reduced lysine catabolism when compared to their respective wild types, thus allowing more lysine to be available for storage protein synthesis.


Subject(s)
Lysine/metabolism , Mutation , Plant Proteins/genetics , Zea mays/genetics , Electrophoresis, Gel, Two-Dimensional , Genotype , Plant Proteins/analysis , Plant Proteins/biosynthesis , Seeds/metabolism , Zea mays/metabolism , Zein/analysis , Zein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...