Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Cell ; 57(16): 1922-1936.e9, 2022 08 22.
Article in English | MEDLINE | ID: mdl-35998583

ABSTRACT

Sequence variants in cis-acting enhancers are important for polygenic disease, but their role in Mendelian disease is poorly understood. Redundancy between enhancers that regulate the same gene is thought to mitigate the pathogenic impact of enhancer mutations. Recent findings, however, have shown that loss-of-function mutations in a single enhancer near PTF1A cause pancreas agenesis and neonatal diabetes. Using mouse and human genetic models, we show that this enhancer activates an entire PTF1A enhancer cluster in early pancreatic multipotent progenitors. This leading role, therefore, precludes functional redundancy. We further demonstrate that transient expression of PTF1A in multipotent progenitors sets in motion an epigenetic cascade that is required for duct and endocrine differentiation. These findings shed insights into the genome regulatory mechanisms that drive pancreas differentiation. Furthermore, they reveal an enhancer that acts as a regulatory master key and is thus vulnerable to pathogenic loss-of-function mutations.


Subject(s)
Diabetes Mellitus , Transcription Factors , Animals , Cell Differentiation/genetics , Diabetes Mellitus/metabolism , Enhancer Elements, Genetic/genetics , Gene Expression Regulation, Developmental , Humans , Infant, Newborn , Mice , Mutation/genetics , Pancreas/metabolism , Regulatory Sequences, Nucleic Acid , Transcription Factors/metabolism
2.
Islets ; 13(5-6): 134-139, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34282714

ABSTRACT

The Hnf1b-CreERT2 BAC transgenic (Tg(Hnf1b-cre/ERT2)1Jfer) has been used extensively to trace the progeny of pancreatic ducts in developmental, regeneration, or cancer models. Hnf1b-CreERT2 transgenics have been used to show that the cells that form the embryonic pancreas duct-like plexus are bipotent duct-endocrine progenitors, whereas adult mouse duct cells are not a common source of ß cells in various regenerative settings. The interpretation of such genetic lineage tracing studies is critically dependent on a correct understanding of the cell type specificity of recombinase activity with each reporter system. We have reexamined the performance of Hnf1b-CreERT2 with a Rosa26-RFP reporter transgene. This showed inducible recombination of up to 96% adult duct cells, a much higher efficiency than previously used reporter transgenes. Despite this high duct-cell excision, recombination in α and ß cells remained very low, similar to previously used reporters. However, nearly half of somatostatin-expressing δ cells showed reporter activation, which was due to Cre expression in δ cells rather than to duct to δ cell conversions. The high recombination efficiency in duct cells indicates that the Hnf1b-CreERT2 model can be useful for both ductal fate mapping and genetic inactivation studies. The recombination in δ cells does not modify the interpretation of studies that failed to show duct conversions to other cell types, but needs to be considered if this model is used in studies that aim to modify the plasticity of pancreatic duct cells.


Subject(s)
Islets of Langerhans , Somatostatin-Secreting Cells , Animals , Hepatocyte Nuclear Factor 1-beta/genetics , Integrases/genetics , Mice , Mice, Transgenic , Recombination, Genetic , Transgenes
3.
Cell Rep ; 35(2): 108981, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33852861

ABSTRACT

Despite the central role of chromosomal context in gene transcription, human noncoding DNA variants are generally studied outside of their genomic location. This limits our understanding of disease-causing regulatory variants. INS promoter mutations cause recessive neonatal diabetes. We show that all INS promoter point mutations in 60 patients disrupt a CC dinucleotide, whereas none affect other elements important for episomal promoter function. To model CC mutations, we humanized an ∼3.1-kb region of the mouse Ins2 gene. This recapitulated developmental chromatin states and cell-specific transcription. A CC mutant allele, however, abrogated active chromatin formation during pancreas development. A search for transcription factors acting through this element revealed that another neonatal diabetes gene product, GLIS3, has a pioneer-like ability to derepress INS chromatin, which is hampered by the CC mutation. Our in vivo analysis, therefore, connects two human genetic defects in an essential mechanism for developmental activation of the INS gene.


Subject(s)
Chromatin/metabolism , DNA-Binding Proteins/genetics , Diabetes Mellitus/genetics , Insulin/genetics , Pancreas/metabolism , Point Mutation , Repressor Proteins/genetics , Trans-Activators/genetics , Alleles , Animals , Chromatin/chemistry , Chromatin/pathology , DNA-Binding Proteins/deficiency , Diabetes Mellitus/metabolism , Diabetes Mellitus/pathology , Embryo, Mammalian , Gene Expression Regulation, Developmental , Humans , Infant, Newborn , Infant, Newborn, Diseases , Insulin/deficiency , Mice , Mice, Transgenic , Pancreas/growth & development , Pancreas/pathology , Promoter Regions, Genetic , Protein Isoforms/deficiency , Protein Isoforms/genetics , Repressor Proteins/deficiency , Trans-Activators/deficiency , Transcription, Genetic
4.
EMBO J ; 39(9): e102808, 2020 05 04.
Article in English | MEDLINE | ID: mdl-32154941

ABSTRACT

Defects in transcriptional regulators of pancreatic exocrine differentiation have been implicated in pancreatic tumorigenesis, but the molecular mechanisms are poorly understood. The locus encoding the transcription factor HNF1A harbors susceptibility variants for pancreatic ductal adenocarcinoma (PDAC), while KDM6A, encoding Lysine-specific demethylase 6A, carries somatic mutations in PDAC. Here, we show that pancreas-specific Hnf1a null mutant transcriptomes phenocopy those of Kdm6a mutations, and both defects synergize with KrasG12D to cause PDAC with sarcomatoid features. We combine genetic, epigenomic, and biochemical studies to show that HNF1A recruits KDM6A to genomic binding sites in pancreatic acinar cells. This remodels the acinar enhancer landscape, activates differentiated acinar cell programs, and indirectly suppresses oncogenic and epithelial-mesenchymal transition genes. We also identify a subset of non-classical PDAC samples that exhibit the HNF1A/KDM6A-deficient molecular phenotype. These findings provide direct genetic evidence that HNF1A deficiency promotes PDAC. They also connect the tumor-suppressive role of KDM6A deficiency with a cell-specific molecular mechanism that underlies PDAC subtype definition.


Subject(s)
Acinar Cells/metabolism , Carcinoma, Pancreatic Ductal/genetics , Hepatocyte Nuclear Factor 1-alpha/genetics , Histone Demethylases/genetics , Pancreatic Neoplasms/genetics , Animals , Carcinoma, Pancreatic Ductal/metabolism , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Hepatocyte Nuclear Factor 1-alpha/metabolism , Histone Demethylases/metabolism , Humans , Mice , Mutation , Organ Specificity , Pancreas/metabolism , Pancreatic Neoplasms/metabolism
5.
Dev Cell ; 17(6): 849-60, 2009 Dec.
Article in English | MEDLINE | ID: mdl-20059954

ABSTRACT

A longstanding unsettled question is whether pancreatic beta cells originate from exocrine duct cells. We have now used genetic labeling to fate map embryonic and adult pancreatic duct cells. We show that Hnf1beta+ cells of the trunk compartment of the early branching pancreas are precursors of acinar, duct, and endocrine lineages. Hnf1beta+ cells subsequent form the embryonic duct epithelium, which gives rise to both ductal and endocrine lineages, but not to acinar cells. By the end of gestation, the fate of Hnf1beta+ duct cells is further restrained. We provide compelling evidence that the ductal epithelium does not make a significant contribution to acinar or endocrine cells during neonatal growth, during a 6 month observation period, or during beta cell growth triggered by ligation of the pancreatic duct or by cell-specific ablation with alloxan followed by EGF/gastrin treatment. Thus, once the ductal epithelium differentiates it has a restricted plasticity, even under regenerative settings.


Subject(s)
Insulin-Secreting Cells/cytology , Pancreas/embryology , Animals , Female , Hepatocyte Nuclear Factor 1-beta/genetics , Hepatocyte Nuclear Factor 1-beta/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Pancreas/cytology , Pancreas, Exocrine/embryology
SELECTION OF CITATIONS
SEARCH DETAIL