Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 6: 6347, 2015 Feb 23.
Article in English | MEDLINE | ID: mdl-25704539

ABSTRACT

The role of dissolved organic matter (DOM) as either a sink for inorganic nutrients or an additional nutrient source is an often-neglected component of nutrient budgets in aquatic environments. Here, we examined the role of DOM in reactive nitrogen (N) storage in Sierra Nevada (California, USA) lakes where atmospheric deposition of N has shifted the lakes toward seasonal phosphorus (P)-limitation. Nuclear magnetic resonance (NMR) spectroscopy and isotope analyses performed on DOM isolated from Lake Tahoe reveal the accumulation of refractory proteinaceous material with a 100-200-year residence time. In contrast, smaller lakes in the same watershed contain DOM with typical terrestrial characteristics, indicating that proteins in Lake Tahoe are autochthonously produced. These data support the role of DOM as a possible sink for reactive N in these lake ecosystems and identify a potential role for DOM in affecting the inorganic nutrient stoichiometry of these environments.

2.
Science ; 341(6150): 1085-9, 2013 Sep 06.
Article in English | MEDLINE | ID: mdl-23929948

ABSTRACT

Seasonal variations of atmospheric carbon dioxide (CO2) in the Northern Hemisphere have increased since the 1950s, but sparse observations have prevented a clear assessment of the patterns of long-term change and the underlying mechanisms. We compare recent aircraft-based observations of CO2 above the North Pacific and Arctic Oceans to earlier data from 1958 to 1961 and find that the seasonal amplitude at altitudes of 3 to 6 km increased by 50% for 45° to 90°N but by less than 25% for 10° to 45°N. An increase of 30 to 60% in the seasonal exchange of CO2 by northern extratropical land ecosystems, focused on boreal forests, is implicated, substantially more than simulated by current land ecosystem models. The observations appear to signal large ecological changes in northern forests and a major shift in the global carbon cycle.


Subject(s)
Atmosphere/chemistry , Carbon Cycle , Carbon Dioxide/chemistry , Ecosystem , Trees , Arctic Regions , Oceans and Seas , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL