Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(15)2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35898056

ABSTRACT

This study introduces an alternative to the existing methods for measuring ocean currents based on a recently developed technology. The SailBuoy is an unmanned surface vehicle powered by wind and solar panels that can navigate autonomously to predefined waypoints and record velocity profiles using an integrated downward-looking acoustic Doppler current profiler (ADCP). Data collected on two validation campaigns show a satisfactory correlation between the SailBuoy current records and traditional observation techniques such as bottom-mounted and moored current profilers and moored single-point current meter. While the highest correlations were found in tidal signals, strong current, and calm weather conditions, low current speeds and varying high wave and wind conditions reduced correlation considerably. Filtering out some events with the high sea surface roughness associated with high wind and wave conditions may increase the SailBuoy ADCP listening quality and lead to better correlations. Not yet resolved is a systematic offset between the measurements obtained by the SailBuoy and the reference instruments of ±0.03 m/s. Possible reasons are discussed to be the differences between instruments (various products) as well as changes in background noise levels due to environmental conditions.

2.
Sensors (Basel) ; 21(20)2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34695965

ABSTRACT

Effective ocean management requires integrated and sustainable ocean observing systems enabling us to map and understand ecosystem properties and the effects of human activities. Autonomous subsurface and surface vehicles, here collectively referred to as "gliders", are part of such ocean observing systems providing high spatiotemporal resolution. In this paper, we present some of the results achieved through the project "Unmanned ocean vehicles, a flexible and cost-efficient offshore monitoring and data management approach-GLIDER". In this project, three autonomous surface and underwater vehicles were deployed along the Lofoten-Vesterålen (LoVe) shelf-slope-oceanic system, in Arctic Norway. The aim of this effort was to test whether gliders equipped with novel sensors could effectively perform ecosystem surveys by recording physical, biogeochemical, and biological data simultaneously. From March to September 2018, a period of high biological activity in the area, the gliders were able to record a set of environmental parameters, including temperature, salinity, and oxygen, map the spatiotemporal distribution of zooplankton, and record cetacean vocalizations and anthropogenic noise. A subset of these parameters was effectively employed in near-real-time data assimilative ocean circulation models, improving their local predictive skills. The results presented here demonstrate that autonomous gliders can be effective long-term, remote, noninvasive ecosystem monitoring and research platforms capable of operating in high-latitude marine ecosystems. Accordingly, these platforms can record high-quality baseline environmental data in areas where extractive activities are planned and provide much-needed information for operational and management purposes.


Subject(s)
Ecosystem , Salinity , Humans , Oceans and Seas
SELECTION OF CITATIONS
SEARCH DETAIL
...