Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
BMC Microbiol ; 24(1): 9, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172710

ABSTRACT

BACKGROUND: Enterococcus faecium is a Gram-positive bacterium, naturally present in the human intestinal microbiota, but is also an opportunistic pathogen responsible for healthcare-associated infections. Persisters are individuals of a subpopulation able to survive by arrest of growth coping with conditions that are lethal for the rest of the population. These persistent cells can grow again when the stress disappears from their environment and can cause relapses. RESULTS: In this study, we highlighted that ciprofloxacin (10-fold the MIC) led to the formation of persister cells of E. faecium. The kill curve was typically biphasic with an initial drop of survival (more than 2 orders of magnitude reduction) followed by a constant bacterial count. Growth curves and antimicrobial susceptibility tests of these persisters were similar to those of the original cells. In addition, by genomic analyses, we confirmed that the persisters were genotypically identical to the wild type. Comparative proteomic analysis revealed that 56 proteins have significantly different abundances in persisters compared to cells harvested before the addition of stressing agent. Most of them were related to energetic metabolisms, some polypeptides were involved in transcription regulation, and seven were stress proteins like CspA, PrsA, ClpX and particularly enzymes linked to the oxidative stress response. CONCLUSIONS: This work provided evidences that the pathogen E. faecium was able to enter a state of persister that may have an impact in chronic infections and relapses. Moreover, putative key effectors of this phenotypical behavior were identified by proteomic approach.


Subject(s)
Enterococcus faecium , Humans , Enterococcus faecium/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Proteomics , Ciprofloxacin/pharmacology , Recurrence , Microbial Sensitivity Tests
2.
Chest ; 165(1): 150-160, 2024 01.
Article in English | MEDLINE | ID: mdl-37544426

ABSTRACT

BACKGROUND: Acute chest syndrome (ACS) is a life-threatening complication of sickle cell disease (SCD). Although respiratory pathogens are frequently detected in children with ACS, their respective role in triggering the disease is still unclear. We hypothesized that the incidence of ACS followed the unprecedented population-level changes in respiratory pathogen dynamics after COVID-19-related nonpharmaceutical interventions (NPIs). RESEARCH QUESTION: What is the respective role of respiratory pathogens in ACS epidemiology? STUDY DESIGN AND METHODS: This study was an interrupted time series analysis of patient records from a national hospital-based surveillance system. All children aged < 18 years with SCD hospitalized for ACS in France between January 2015 and May 2022 were included. The monthly incidence of ACS per 1,000 children with SCD over time was analyzed by using a quasi-Poisson regression model. The circulation of 12 respiratory pathogens in the general pediatric population over the same period was included in the model to assess the fraction of ACS potentially attributable to each respiratory pathogen. RESULTS: Among the 55,941 hospitalizations of children with SCD, 2,306 episodes of ACS were included (median [interquartile range] age, 9 [5-13] years). A significant decrease was observed in ACS incidence after NPI implementation in March 2020 (-29.5%; 95% CI, -46.8 to -12.2; P = .001) and a significant increase after lifting of the NPIs in April 2021 (24.4%; 95% CI, 7.2 to 41.6; P = .007). Using population-level incidence of several respiratory pathogens, Streptococcus pneumoniae accounted for 30.9% (95% CI, 4.9 to 56.9; P = .02) of ACS incidence over the study period and influenza 6.8% (95% CI, 2.3 to 11.3; P = .004); other respiratory pathogens had only a minor role. INTERPRETATION: NPIs were associated with significant changes in ACS incidence concomitantly with major changes in the circulation of several respiratory pathogens in the general population. This unique epidemiologic situation allowed determination of the contribution of these respiratory pathogens, in particular S pneumoniae and influenza, to the burden of childhood ACS, highlighting the potential benefit of vaccine prevention in this vulnerable population.


Subject(s)
Acute Chest Syndrome , Anemia, Sickle Cell , Influenza, Human , Child , Humans , Child, Preschool , Adolescent , Acute Chest Syndrome/etiology , Acute Chest Syndrome/complications , Incidence , Influenza, Human/complications , Time Factors , Anemia, Sickle Cell/complications , Anemia, Sickle Cell/epidemiology
3.
bioRxiv ; 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37986820

ABSTRACT

Specific determinants associated with Uropathogenic Escherichia coli (UPEC) causing recurrent cystitis are still poorly characterized. The aims of this study were (i) to describe genomic and phenotypic traits associated with recurrence using a large collection of recurrent and paired sporadic UPEC isolates, and (ii) to explore within-host genomic adaptation associated with recurrence using series of 2 to 5 sequential UPEC isolates. Whole genome comparative analyses between 24 recurrent cystitis isolates (RCIs) and 24 phylogenetically paired sporadic cystitis isolates (SCIs) suggested a lower prevalence of putative mobile genetic elements (MGE) in RCIs, such as plasmids and prophages. The intra-patient evolution of the 24 RCI series over time was characterized by SNP occurrence in genes involved in metabolism or membrane transport, and by plasmid loss in 5 out of the 24 RCI series. Genomic evolution occurred early in the course of recurrence, suggesting rapid adaptation to strong selection pressure in the urinary tract. However, RCIs did not exhibit specific virulence factor determinants and could not be distinguished from SCIs by their fitness, biofilm formation, or ability to invade HTB-9 bladder epithelial cells. Taken together, these results suggest a rapid but not convergent adaptation of RCIs that involves both strain- and host-specific characteristics.

4.
Microbiol Spectr ; 11(4): e0481222, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37338376

ABSTRACT

Klebsiella pneumoniae (Kp), a human gut colonizer and opportunistic pathogen, is a major contributor to the global burden of antimicrobial resistance. Virulent bacteriophages represent promising agents for decolonization and therapy. However, the majority of anti-Kp phages that have been isolated thus far are highly specific to unique capsular types (anti-K phages), which is a major limitation to phage therapy prospects due to the highly polymorphic capsule of Kp. Here, we report on an original anti-Kp phage isolation strategy, using capsule-deficient Kp mutants as hosts (anti-Kd phages). We show that anti-Kd phages have a broad host range, as the majority are able to infect noncapsulated mutants of multiple genetic sublineages and O-types. Additionally, anti-Kd phages induce a lower rate of resistance emergence in vitro and provide increased killing efficiency when in combination with anti-K phages. In vivo, anti-Kd phages are able to replicate in mouse guts colonized with a capsulated Kp strain, suggesting the presence of noncapsulated Kp subpopulations. The original strategy proposed here represents a promising avenue that circumvents the Kp capsule host restriction barrier, offering promise for therapeutic development. IMPORTANCE Klebsiella pneumoniae (Kp) is an ecologically generalist bacterium as well as an opportunistic pathogen that is responsible for hospital-acquired infections and a major contributor to the global burden of antimicrobial resistance. In the last decades, limited advances have been made in the use of virulent phages as alternatives or complements to antibiotics that are used to treat Kp infections. This work demonstrates the potential value of an anti-Klebsiella phage isolation strategy that addresses the issue of the narrow host range of anti-K phages. Anti-Kd phages may be active in infection sites in which capsule expression is intermittent or repressed or in combination with anti-K phages, which often induce the loss of capsule in escape mutants.


Subject(s)
Bacteriophages , Klebsiella Infections , Animals , Humans , Mice , Klebsiella pneumoniae/genetics , Bacteriophages/genetics , Host Specificity , Anti-Bacterial Agents/pharmacology , Klebsiella , Klebsiella Infections/therapy , Klebsiella Infections/microbiology
5.
Antimicrob Agents Chemother ; 67(6): e0035823, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37195180

ABSTRACT

The Enterobacter cloacae complex (ECC) has become a major opportunistic pathogen with antimicrobial resistance issues. Temocillin, an "old" carboxypenicillin that is remarkably stable toward ß-lactamases, has been used as an alternative for the treatment of multidrug-resistant ECC infections. Here, we aimed at deciphering the never-investigated mechanisms of temocillin resistance acquisition in Enterobacterales. By comparative genomic analysis of two clonally related ECC clinical isolates, one susceptible (Temo_S [MIC of 4 mg/L]) and the other resistant (Temo_R [MIC of 32 mg/L]), we found that they differed by only 14 single-nucleotide polymorphisms, including one nonsynonymous mutation (Thr175Pro) in the two-component system (TCS) sensor histidine kinase BaeS. By site-directed mutagenesis in Escherichia coli CFT073, we demonstrated that this unique change in BaeS was responsible for a significant (16-fold) increase in temocillin MIC. Since the BaeSR TCS regulates the expression of two resistance-nodulation-cell division (RND)-type efflux pumps (namely, AcrD and MdtABCD) in E. coli and Salmonella, we demonstrated by quantitative reverse transcription-PCR that mdtB, baeS, and acrD genes were significantly overexpressed (15-, 11-, and 3-fold, respectively) in Temo_R. To confirm the role of each efflux pump in this mechanism, multicopy plasmids harboring mdtABCD or acrD were introduced into either Temo_S or the reference strain E. cloacae subsp. cloacae ATCC 13047. Interestingly, only the overexpression of acrD conferred a significant increase (from 8- to 16-fold) of the temocillin MIC. Altogether, we have shown that temocillin resistance in the ECC can result from a single BaeS alteration, likely resulting in the permanent phosphorylation of BaeR and leading to AcrD overexpression and temocillin resistance through enhanced active efflux.


Subject(s)
Anti-Bacterial Agents , Membrane Transport Proteins , Membrane Transport Proteins/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Enterobacter cloacae/genetics , Enterobacter cloacae/metabolism , Escherichia coli/genetics , Point Mutation , Microbial Sensitivity Tests
6.
Sci Rep ; 13(1): 2639, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36788252

ABSTRACT

Pseudomonas aeruginosa is one of the leading causes of healthcare-associated infections. For this study, the susceptibility profiles to antipseudomonal antibiotics and a quaternary ammonium compound, didecyldimethylammonium chloride (DDAC), widely used as a disinfectant, were established for 180 selected human and environmental hospital strains isolated between 2011 and 2020. Furthermore, a genomic study determined resistome and clonal putative relatedness for 77 of them. During the ten-year study period, it was estimated that 9.5% of patients' strains were resistant to carbapenems, 11.9% were multidrug-resistant (MDR), and 0.7% were extensively drug-resistant (XDR). Decreased susceptibility (DS) to DDAC was observed for 28.0% of strains, a phenotype significantly associated with MDR/XDR profiles and from hospital environmental samples (p < 0.0001). According to genomic analyses, the P. aeruginosa population unsusceptible to carbapenems and/or to DDAC was diverse but mainly belonged to top ten high-risk clones described worldwide by del Barrio-Tofiño et al. The carbapenem resistance appeared mainly due to the production of the VIM-2 carbapenemase (39.3%) and DS to DDAC mediated by MexAB-OprM pump efflux overexpression. This study highlights the diversity of MDR/XDR populations of P. aeruginosa which are unsusceptible to compounds that are widely used in medicine and hospital disinfection and are probably distributed in hospitals worldwide.


Subject(s)
Dermatologic Agents , Pseudomonas Infections , Humans , Carbapenems/pharmacology , Pseudomonas aeruginosa , Quaternary Ammonium Compounds/pharmacology , Membrane Transport Proteins/genetics , Anti-Bacterial Agents/pharmacology , beta-Lactamases/genetics , Pseudomonas Infections/microbiology , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial/genetics
7.
Front Microbiol ; 14: 1334555, 2023.
Article in English | MEDLINE | ID: mdl-38274763

ABSTRACT

Introduction: Klebsiella pneumoniae is a major cause of infections and reproductive disorders among horses, ranked in recent French studies as the sixth most frequently isolated bacterial pathogen in equine clinical samples. The proportion of multidrug-resistant (MDR) K. pneumoniae is therefore significant in a context where MDR K. pneumoniae strains are considered a major global concern by the World Health Organization. Methods: In this study, we used a genomic approach to characterize a population of 119 equine K. pneumoniae strains collected by two laboratories specialized in animal health in Normandy (France). We describe the main antibiotic resistance profiles and acquired resistance genes, and specify the proportion of virulence-encoding genes carried by these strains. The originality of our panel of strains lies in the broad collection period covered, ranging from 1996 to 2020, and the variety of sample sources: necropsies, suspected bacterial infections (e.g., genital, wound, allantochorion, and umbilical artery samples), and contagious equine metritis analyses. Results: Our results reveal a remarkable level of genomic diversity among the strains studied and we report the presence of 39% MDR and 9% hypervirulent strains (including 5% that are both MDR and hypervirulent). Discussion: These findings clearly emphasize the importance of improving the surveillance of K. pneumoniae in routine equine diagnostic tests to detect high-risk MDR-hypervirulent Klebsiella pneumoniae strains. The circulation of these worrisome strains reveals that they are not being detected by the simple K1, K2, and K5 serotype approach currently implemented in the French horse-breeding sector.

8.
Front Ecol Environ ; 21(9): 428-434, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38464945

ABSTRACT

Antibiotic resistance is one of the greatest public health challenges of our time. International efforts to curb resistance have largely focused on drug development and limiting unnecessary antibiotic use. However, in areas where water, sanitation, and hygiene infrastructure is lacking, we propose that bacterial flow between humans and animals can exacerbate the emergence and spread of resistant pathogens. Here, we describe the consequences of poor environmental controls by comparing mobile resistance elements among Escherichia coli recovered from humans and meat in Cambodia, a middle-income country with substantial human-animal connectivity and unregulated antibiotic use. We identified identical mobile resistance elements and a conserved transposon region that were widely dispersed in both humans and animals, a phenomenon rarely observed in high-income settings. Our findings indicate that plugging leaks at human-animal interfaces should be a critical part of addressing antibiotic resistance in low- and especially middle-income countries.

9.
Antimicrob Agents Chemother ; 66(11): e0077622, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36200761

ABSTRACT

The Enterobacter cloacae complex (ECC) is a group of diverse environmental and clinically relevant bacterial species associated with a variety of infections in humans. ECC have emerged as one of the leading causes of nosocomial infections worldwide. The purpose of this paper is to evaluate the activity of NOSO-502 and colistin (CST) against a panel of ECC clinical isolates, including different Hoffmann's clusters strains, and to investigate the associated resistance mechanisms. NOSO-502 is the first preclinical candidate of a novel antibiotic class, the odilorhabdins (ODLs). MIC50 and MIC90 of NOSO-502 against ECC are 1 µg/mL and 2 µg/mL, respectively, with a MIC range from 0.5 µg/mL to 32 µg/mL. Only strains belonging to clusters XI and XII showed decreased susceptibility to both NOSO-502 and CST while isolates from clusters I, II, IV, and IX were only resistant to CST. To understand this phenomenon, E. cloacae ATCC 13047 from cluster XI was chosen for further study. Results revealed that the two-component system ECL_01761-ECL_01762 (ortholog of CrrAB from Klebsiella pneumoniae) induces NOSO-502 hetero-resistance by expression regulation of the ECL_01758 efflux pump component (ortholog of KexD from K. pneumoniae) which could compete with AcrB to work with the multidrug efflux pump proteins AcrA and TolC. In E. cloacae ATCC 13047, CST-hetero-resistance is conferred via modification of the lipid A by addition of 4-amino-4-deoxy-l-arabinose controlled by PhoPQ. We identified that the response regulator ECL_01761 is also involved in this resistance pathway by regulating the expression of the ECL_01760 membrane transporter.


Subject(s)
Colistin , Enterobacter cloacae , Humans , Colistin/pharmacology , Colistin/metabolism , Drug Resistance, Bacterial/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Klebsiella pneumoniae/metabolism , Microbial Sensitivity Tests
10.
J Microbiol Methods ; 201: 106564, 2022 10.
Article in English | MEDLINE | ID: mdl-36084763

ABSTRACT

BACKGROUND: Salmonella enterica is among the major burdens for public health at global level. Typing of salmonellae below the species level is fundamental for different purposes, but traditional methods are expensive, technically demanding, and time-consuming, and therefore limited to reference centers. Fourier transform infrared (FTIR) spectroscopy is an alternative method for bacterial typing, successfully applied for classification at different infra-species levels. AIM: This study aimed to address the challenge of subtyping Salmonella enterica at O-serogroup level by using FTIR spectroscopy. We applied machine learning to develop a novel approach for S. enterica typing, using the FTIR-based IR Biotyper® system (IRBT; Bruker Daltonics GmbH & Co. KG, Germany). We investigated a multicentric collection of isolates, and we compared the novel approach with classical serotyping-based and molecular methods. METHODS: A total of 958 well characterized Salmonella isolates (25 serogroups, 138 serovars), collected in 11 different centers (in Europe and Japan), from clinical, environmental and food samples were included in this study and analyzed by IRBT. Infrared absorption spectra were acquired from water-ethanol bacterial suspensions, from culture isolates grown on seven different agar media. In the first part of the study, the discriminatory potential of the IRBT system was evaluated by comparison with reference typing method/s. In the second part of the study, the artificial intelligence capabilities of the IRBT software were applied to develop a classifier for Salmonella isolates at serogroup level. Different machine learning algorithms were investigated (artificial neural networks and support vector machine). A subset of 88 pre-characterized isolates (corresponding to 25 serogroups and 53 serovars) were included in the training set. The remaining 870 samples were used as validation set. The classifiers were evaluated in terms of accuracy, error rate and failed classification rate. RESULTS: The classifier that provided the highest accuracy in the cross-validation was selected to be tested with four external testing sets. Considering all the testing sites, accuracy ranged from 97.0% to 99.2% for non-selective media, and from 94.7% to 96.4% for selective media. CONCLUSIONS: The IRBT system proved to be a very promising, user-friendly, and cost-effective tool for Salmonella typing at serogroup level. The application of machine learning algorithms proved to enable a novel approach for typing, which relies on automated analysis and result interpretation, and it is therefore free of potential human biases. The system demonstrated a high robustness and adaptability to routine workflows, without the need of highly trained personnel, and proving to be suitable to be applied with isolates grown on different agar media, both selective and unselective. Further tests with currently circulating clinical, food and environmental isolates would be necessary before implementing it as a potentially stand-alone standard method for routine use.


Subject(s)
Salmonella enterica , Agar , Artificial Intelligence , Bacterial Typing Techniques/methods , Culture Media , Ethanol , Humans , Machine Learning , Salmonella , Serogroup , Spectroscopy, Fourier Transform Infrared/methods , Water
11.
J Cancer Res Clin Oncol ; 148(8): 2013-2022, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35476232

ABSTRACT

BACKGROUND: Hairy cell leukemia (HCL) is a rare chronic B cell malignancy, characterized by infiltration of bone marrow, blood and spleen by typical "hairy cells" that bear the BRAFV600E mutation. However, in addition to the intrinsic activation of the MAP kinase pathway as a consequence of the BRAFV600E mutation, the potential participation of other signaling pathways to the pathophysiology of the disease remains unclear as the precise origin of the malignant hairy B cells. MATERIALS AND METHODS: Using mRNA gene expression profiling based on the Nanostring technology and the analysis of 290 genes with crucial roles in B cell lymphomas, we defined a 17 gene expression signature specific for HCL. RESULTS: Separate analysis of samples from classical and variant forms of hairy cell leukemia showed almost similar mRNA expression profiles apart from overexpression in vHCL of the immune checkpoints CD274 and PDCD1LG2 and underexpression of FAS. Our results point to a post-germinal memory B cell origin and in some samples to the activation of the non-canonical NF-κB pathway. CONCLUSIONS: This study provides a better understanding of the pathogenesis of HCL and describes new and potential targets for treatment approaches and guidance for studies in the molecular mechanisms of HCL.


Subject(s)
Leukemia, Hairy Cell , B-Lymphocytes/pathology , Humans , Leukemia, Hairy Cell/drug therapy , Leukemia, Hairy Cell/genetics , Leukemia, Hairy Cell/metabolism , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , RNA, Messenger , Transcriptome
12.
Microbiol Spectr ; 10(1): e0159821, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35138170

ABSTRACT

Staphylococcus lugdunensis is a coagulase-negative Staphylococcus that emerges as an important opportunistic pathogen. However, little is known about the regulation underlying the transition from commensal to virulent state. Based on knowledge of S. aureus virulence, we suspected that the agr quorum sensing system may be an important determinant for the pathogenicity of S. lugdunensis. We investigated the functions of the transcriptional regulator AgrA using the agrA deletion mutant. AgrA played a role in cell pigmentation: ΔargA mutant colonies were white while the parental strains were slightly yellow. Compared with the wild-type strain, the ΔargA mutant was affected in its ability to form biofilm and was less able to survive in mice macrophages. Moreover, the growth of ΔagrA was significantly reduced by the addition of 10% NaCl or 0.4 mM H2O2 and its survival after 2 h in the presence of 1 mM H2O2 was more than 10-fold reduced. To explore the mechanisms involved beyond these phenotypes, the ΔagrA proteome and transcriptome were characterized by mass spectrometry and RNA-Seq. We found that AgrA controlled several virulence factors as well as stress-response factors, which are well correlated with the reduced resistance of the ΔagrA mutant to osmotic and oxidative stresses. These results were not the consequence of the deregulation of RNAIII of the agr system, since no phenotype or alteration of the proteomic profile has been observed for the ΔRNAIII mutant. Altogether, our results highlighted that the AgrA regulator of S. lugdunensis played a key role in its ability to become pathogenic. IMPORTANCE Although belonging to the natural human skin flora, Staphylococcus lugdunensis is recognized as a particularly aggressive and destructive pathogen. This study aimed to characterize the role of the response regulator AgrA, which is a component of the quorum-sensing agr system and known to be a major element in the regulation of pathogenicity and biofilm formation in Staphylococcus aureus. In the present study, we showed that, contrary to S. aureus, the agrA deletion mutant produced less biofilm. Inactivation of agrA conferred a white colony phenotype and impacted S. lugdunensis in its ability to survive in mice macrophages and to cope with osmotic and oxidative stresses. By global proteomic and transcriptomic approaches, we identified the AgrA regulon, bringing molecular bases underlying the observed phenotypes. Together, our data showed the importance of AgrA in the opportunistic pathogenic behavior of S. lugdunensis allowing it to be considered as an interesting therapeutic target.


Subject(s)
Bacterial Proteins/metabolism , Biofilms , Staphylococcal Infections/microbiology , Staphylococcus lugdunensis/physiology , Staphylococcus lugdunensis/pathogenicity , Animals , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Humans , Hydrogen Peroxide/pharmacology , Male , Mice , Mice, Inbred BALB C , Staphylococcus lugdunensis/drug effects , Staphylococcus lugdunensis/genetics , Virulence
13.
Pathogens ; 12(1)2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36678412

ABSTRACT

Pseudomonas aeruginosa is one of the leading causes of healthcare-associated infections in humans. This bacterium is less represented in veterinary medicine, despite causing difficult-to-treat infections due to its capacity to acquire antimicrobial resistance, produce biofilms, and persist in the environment, along with its limited number of veterinary antibiotic therapies. Here, we explored susceptibility profiles to antibiotics and to didecyldimethylammonium chloride (DDAC), a quaternary ammonium widely used as a disinfectant, in 168 P. aeruginosa strains isolated from animals, mainly Equidae. A genomic study was performed on 41 of these strains to determine their serotype, sequence type (ST), relatedness, and resistome. Overall, 7.7% of animal strains were resistant to carbapenems, 10.1% presented a multidrug-resistant (MDR) profile, and 11.3% showed decreased susceptibility (DS) to DDAC. Genomic analyses revealed that the study population was diverse, and 4.9% were ST235, which is considered the most relevant human high-risk clone worldwide. This study found P. aeruginosa populations with carbapenem resistance, multidrug resistance, and DS to DDAC in equine and canine isolates. These strains, which are not susceptible to antibiotics used in veterinary and human medicine, warrant close the setting up of a clone monitoring, based on that already in place in human medicine, in a one-health approach.

14.
Front Microbiol ; 12: 628058, 2021.
Article in English | MEDLINE | ID: mdl-34248862

ABSTRACT

Species belonging to Enterobacter cloacae complex have been isolated in numerous environments and samples of various origins. They are also involved in opportunistic infections in plants, animals, and humans. Previous prospection in Guadeloupe (French West Indies) indicated a high frequency of E. cloacae complex strains resistant to third-generation cephalosporins (3GCs) in a local lizard population (Anolis marmoratus), but knowledge of the distribution and resistance of these strains in humans and the environment is limited. The aim of this study was to compare the distribution and antibiotic susceptibility pattern of E. cloacae complex members from different sources in a "one health" approach and to find possible explanations for the high level of resistance in non-human samples. E. cloacae complex strains were collected between January 2017 and the end of 2018 from anoles, farm animals, local fresh produce, water, and clinical human samples. Isolates were characterized by the heat-shock protein 60 gene-fragment typing method, and whole-genome sequencing was conducted on the most frequent clusters (i.e., C-VI and C-VIII). The prevalence of resistance to 3GCs was relatively high (56/346, 16.2%) in non-human samples. The associated resistance mechanism was related to an AmpC overproduction; however, in human samples, most of the resistant strains (40/62) produced an extended-spectrum beta-lactamase. No relation was found between resistance in isolates from wild anoles (35/168) and human activities. Specific core-genome phylogenetic analysis highlighted an important diversity in this bacterial population and no wide circulation among the different compartments. In our setting, the mutations responsible for resistance to 3GCs, especially in ampD, were diverse and not compartment specific. In conclusion, high levels of resistance in non-human E. cloacae complex isolates are probably due to environmental factors that favor the selection of these resistant strains, and this will be explored further.

15.
Arch Microbiol ; 203(6): 3687-3694, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33983488

ABSTRACT

During the infectious process, pathogens such as Staphylococcus lugdunensis have to cope with the condition of host-induced iron-limitation. Using the RNAseq approach, we performed the first global transcriptomic analysis of S. lugdunensis cells incubated in the absence and presence of iron chelator. One hundred and seventy-five genes were identified as members of the iron-limitation stimulon (127 up- and 48 downregulated). Six gene clusters known or likely required for the acquisition of iron have been identified. Among them, a novel Energy-Coupling Factor type transporter (ECF), homologous to the lhaSTA operon, has been found into a 13-gene putative operon and strongly overexpressed under iron-limitation condition. Moreover, the transcription of genes involved in resistance to oxidative stress (including catalase), virulence, transcriptional regulation, and hemin detoxification were also modified. These data provide some answers on the cellular response to the iron-limitation stress that is important for the opportunistic behavior of this pathogen.


Subject(s)
Gene Expression Profiling , Iron/metabolism , Staphylococcus lugdunensis/genetics , Gene Expression Regulation, Bacterial , Multigene Family , Staphylococcus lugdunensis/metabolism , Staphylococcus lugdunensis/pathogenicity
16.
BMC Microbiol ; 20(1): 328, 2020 10 28.
Article in English | MEDLINE | ID: mdl-33115407

ABSTRACT

BACKGROUND: Staphylococcus lugdunensis is a coagulase-negative Staphylococcus part of the commensal skin flora but emerge as an important opportunistic pathogen. Because iron limitation is a crucial stress during infectious process, we performed phenotypic study and compared proteomic profiles of this species incubated in absence and in presence of the iron chelator 2,2'-dipyridyl (DIP). RESULTS: No modification of cell morphology nor cell wall thickness were observed in presence of DIP. However iron-limitation condition promoted biofilm formation and reduced the ability to cope with oxidative stress (1 mM H2O2). In addition, S. lugdunensis N920143 cultured with DIP was significantly less virulent in the larvae of Galleria mellonella model of infection than that grown under standard conditions. We verified that these phenotypes were due to an iron limitation by complementation experiments with FeSO4. By mass spectrometry after trypsin digestion, we characterized the first iron-limitation stress proteome in S. lugdunensis. Among 1426 proteins identified, 349 polypeptides were differentially expressed. 222 were more and 127 less abundant in S. lugdunensis incubated in iron-limitation condition, and by RT-qPCR, some of the corresponding genes have been shown to be transcriptionally regulated. Our data revealed that proteins involved in iron metabolism and carriers were over-expressed, as well as several ABC transporters and polypeptides linked to cell wall metabolism. Conversely, enzymes playing a role in the oxidative stress response (especially catalase) were repressed. CONCLUSIONS: This phenotypic and global proteomic study allowed characterization of the response of S. lugdunensis to iron-limitation. We showed that iron-limitation promoted biofilm formation, but decrease the oxidative stress resistance that may, at least in part, explained the reduced virulence of S. lugdunensis observed under low iron condition.


Subject(s)
Iron/metabolism , Phenotype , Staphylococcus lugdunensis/genetics , Humans , Proteomics , Staphylococcus lugdunensis/metabolism , Staphylococcus lugdunensis/pathogenicity , Virulence
17.
Antimicrob Agents Chemother ; 64(10)2020 09 21.
Article in English | MEDLINE | ID: mdl-32778545

ABSTRACT

Genome changes are central to the adaptation of bacteria, especially under antibiotic pressure. The aim of this study was to report phenotypic and genomic adaptations undergone by an Enterobacter hormaechei clinical strain that became highly resistant to key antimicrobials during a 4-month period in a patient hospitalized in an intensive care unit (ICU). All six clinical E. hormaechei strains isolated in one ICU-hospitalized patient have been studied. MICs regarding 17 antimicrobial molecules have been measured. Single nucleotide polymorphisms (SNPs) were determined on the sequenced genomes. The expression of genes involved in antibiotic resistance among Enterobacter cloacae complex strains were determined by reverse transcription-quantitative PCR (qRT-PCR). All the strains belonged to sequence type 66 and were distant by a maximum of nine SNPs. After 3 months of hospitalization, three strains presented a significant increase in MICs for ceftazidime, cefepime, temocillin, ertapenem, tigecycline, ciprofloxacin, and chloramphenicol. Those resistant strains did not acquire additional antibiotic resistance genes but harbored a 16-bp deletion in the ramR gene. This deletion led to upregulated expression of RamA, AcrA, AcrB, and TolC and downregulated expression of OmpF. The ΔramR mutant harbored the same phenotype as the resistant clinical strains regarding tigecycline, chloramphenicol, and ciprofloxacin. The increased expression of RamA due to partial deletion in the ramR gene led to a cross-resistance phenotype by an increase of antibiotic efflux through the AcrAB-TolC pump and a decrease of antibiotic permeability by porin OmpF. ramR appears to be an important adaptative trait for E. hormaechei strains.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/genetics , Drug Resistance, Bacterial , Enterobacter , Humans , Microbial Sensitivity Tests , Tigecycline
18.
Antimicrob Agents Chemother ; 64(10)2020 09 21.
Article in English | MEDLINE | ID: mdl-32778553

ABSTRACT

Enterococcus faecium has become a major opportunistic pathogen with the emergence of vancomycin-resistant enterococci (VRE). As part of the gut microbiota, they have to cope with numerous stresses, including effects of antibiotics and other xenobiotics, especially in patients hospitalized in intensive care units (ICUs) who receive many medications. The aim of this study was to investigate the impact of the most frequently prescribed xenobiotics for ICU patients on fitness, pathogenicity, and antimicrobial resistance of the vanB-positive E. faecium Aus0004 reference strain. Several phenotypic analyses were carried out, and we observed that caspofungin, an antifungal agent belonging to the family of echinocandins, had an important effect on E. faecium growth in vitro We confirmed this effect by electron microscopy and peptidoglycan analysis and showed that, even at a subinhibitory concentration (1/4× MIC, 8 mg/liter), caspofungin had an impact on cell wall organization, especially with respect to the abundance of some muropeptide precursors. By transcriptome sequencing (RNA-seq), it was also shown that around 20% of the transcriptome was altered in the presence of caspofungin, with 321 and 259 significantly upregulated and downregulated genes, respectively. Since the fungal target of caspofungin (i.e., ß-1,3-glucan synthase) was absent in bacteria, the mechanistic pathway of caspofungin activity was investigated. The repression of genes involved in the metabolism of pyruvate seemed to have a drastic impact on bacterial cell viability, while a decrease of glycerol metabolism could explain the conformational modifications of peptidoglycan. This is the first report of caspofungin antibacterial activity against E. faecium, highlighting the potential impact of nonantibiotic xenobiotics against bacterial pathogens.


Subject(s)
Enterococcus faecium , Gram-Positive Bacterial Infections , Vancomycin-Resistant Enterococci , Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Caspofungin , Cell Wall , Humans , Microbial Sensitivity Tests , Vancomycin/pharmacology
19.
Front Microbiol ; 11: 611246, 2020.
Article in English | MEDLINE | ID: mdl-33519766

ABSTRACT

BACKGROUND: Pseudomonas aeruginosa is responsible for up to 10% of healthcare associated urinary tract infections (UTI), which can be difficult to treat and can lead to bacterial persistence. While numerous whole genome sequencing (WGS) analyses have explored within-host genomic adaptation and microevolution of P. aeruginosa during cystic fibrosis (CF) infections, little is known about P. aeruginosa adaptation to the urinary tract. RESULTS: Whole genome sequencing was performed on 108 P. aeruginosa urinary isolates, representing up to five isolates collected from 2 to 5 successive urine samples from seven patients hospitalized in a French hospital over 48-488 days. Clone type single nucleotide polymorphisms (ctSNPs) analysis revealed that each patient was colonized by a single clone type (<6000 SNPs between two isolates) at a given time and over time. However, 0-126 SNPs/genome/year were detected over time. Furthermore, large genomic deletions (1-5% of the genome) were identified in late isolates from three patients. For 2 of them, a convergent deletion of 70 genes was observed. Genomic adaptation (SNPs and deletion) occurred preferentially in genes encoding transcriptional regulators, two-component systems, and carbon compound catabolism. This genomic adaptation was significantly associated with a reduced fitness, particularly in artificial urine medium, but no strict correlation was identified between genomic adaptation and biofilm formation. CONCLUSION: This study provides the first insight into P. aeruginosa within-host evolution in the urinary tract. It was driven by mutational mechanisms and genomic deletions and could lead to phenotypic changes in terms of fitness and biofilm production. Further metabolomic and phenotypic analyses are needed to describe in-depth genotype-phenotype associations in this complex and dynamic host-environment.

20.
Article in English | MEDLINE | ID: mdl-31685460

ABSTRACT

Major facilitator superfamily (MFS) efflux pumps have been shown to be important for bacterial cells to cope with biocides such as chlorhexidine (CHX), a widely used molecule in hospital settings. In this work, we evaluated the role of two genes, smvA and smvR, in CHX resistance in Enterobacter cloacae complex (ECC). smvA encodes an MFS pump whereas smvR, located upstream of smvA, codes for a TetR-type transcriptional repressor. To this aim, we constructed corresponding deletion mutants from the ATCC 13047 strain (CHX MIC, 2 mg/liter) as well as strains overexpressing smvA or smvR in both ATCC 13047 and three clinical isolates exhibiting elevated CHX MICs (16 to 32 mg/liter). Determination of MICs revealed that smvA played a modest role in CHX resistance, in contrast to smvR that modulated the ability of ECC to survive in the presence of CHX. In clinical isolates, the overexpression of smvR significantly reduced MICs of CHX (2 to 8 mg/liter). Sequence analyses of smvR and promoter regions pointed out substitutions in conserved regions. Moreover, transcriptional studies revealed that SmvR acted as a repressor of smvA expression even if no quantitative correlation between the level of smvA mRNA and MICs of CHX could be observed. On the other hand, overproduction of smvA was able to complement the lack of the major resistance-nodulation-cell division (RND) superfamily efflux pump AcrB and restored resistance to ethidium bromide and acriflavine. Although SmvA could expel biocides such as CHX, other actors, whose expression is under SmvR control, should play a critical role in ECC.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Chlorhexidine/pharmacology , Enterobacter cloacae/drug effects , Bacterial Proteins/genetics , Computational Biology , Microbial Sensitivity Tests , Open Reading Frames/genetics , Reverse Transcriptase Polymerase Chain Reaction , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...