Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Opin Chem Biol ; 10(2): 141-6, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16522374

ABSTRACT

Alternatives to petroleum-derived fuels are being sought in order to reduce the world's dependence on non-renewable resources. The most common renewable fuel today is ethanol derived from corn grain (starch) and sugar cane (sucrose). It is expected that there will be limits to the supply of these raw materials in the near future, therefore lignocellulosic biomass is seen as an attractive feedstock for future supplies of ethanol. However, there are technical and economical impediments to the development of a commercial processes utilizing biomass. Technologies are being developed that will allow cost-effective conversion of biomass into fuels and chemicals. These technologies include low-cost thermochemical pretreatment, highly effective cellulases and hemicellulases and efficient and robust fermentative microorganisms. Many advances have been made over the past few years that make commercialization more promising.


Subject(s)
Ethanol , Biopolymers , Cellulase/metabolism , Cellulose/metabolism , Fermentation , Hexoses/metabolism , Pentoses/metabolism , Saccharum/metabolism , Substrate Specificity , Zea mays/metabolism
2.
J Biol Chem ; 280(10): 9431-8, 2005 Mar 11.
Article in English | MEDLINE | ID: mdl-15618218

ABSTRACT

There is a growing need in the textile industry for more economical and environmentally responsible approaches to improve the scouring process as part of the pretreatment of cotton fabric. Enzymatic methods using pectin-degrading enzymes are potentially valuable candidates in this effort because they could reduce the amount of toxic alkaline chemicals currently used. Using high throughput screening of complex environmental DNA libraries more than 40 novel microbial pectate lyases were discovered, and their enzymatic properties were characterized. Several candidate enzymes were found that possessed pH optima and specific activities on pectic material in cotton fibers compatible with their use in the scouring process. However, none exhibited the desired temperature characteristics. Therefore, a candidate enzyme was selected for evolution. Using Gene Site Saturation Mutagenesistrade mark technology, 36 single site mutants exhibiting improved thermotolerance were produced. A combinatorial library derived from the 12 best performing single site mutants was then generated by using Gene Reassemblytrade mark technology. Nineteen variants with further improved thermotolerance were produced. These variants were tested for both improved thermotolerance and performance in the bioscouring application. The best performing variant (CO14) contained eight mutations and had a melting temperature 16 degrees C higher than the wild type enzyme while retaining the same specific activity at 50 degrees C. Optimal temperature of the evolved enzyme was 70 degrees C, which is 20 degrees C higher than the wild type. Scouring results obtained with the evolved enzyme were significantly better than the results obtained with chemical scouring, making it possible to replace the conventional and environmentally harmful chemical scouring process.


Subject(s)
Cotton Fiber , Polysaccharide-Lyases/metabolism , Bacteria/classification , Bacteria/enzymology , Directed Molecular Evolution , Gene Library , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Phylogeny , Polysaccharide-Lyases/chemistry , Polysaccharide-Lyases/genetics , Protein Conformation , Recombinant Proteins/metabolism
3.
Electrophoresis ; 25(18-19): 3117-21, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15472974

ABSTRACT

A 96-capillary array electrophoresis (CAE) instrument has been adapted for large-scale mono- and oligosaccharide analysis and characterization. Operational protocols and data processing tools have been developed to optimize the CAE system for this application. Effects of different additives to the running buffer on efficiency and capillary-to-capillary performance reproducibility have been studied.


Subject(s)
Carbohydrates/analysis , Electrophoresis, Capillary/methods , Buffers , Carbohydrates/isolation & purification , Reproducibility of Results
5.
Appl Environ Microbiol ; 70(5): 3041-6, 2004 May.
Article in English | MEDLINE | ID: mdl-15128565

ABSTRACT

The inclusion of phytase in monogastric animal feed has the benefit of hydrolyzing indigestible plant phytate (myo-inositol 1,2,3,4,5,6-hexakis dihydrogen phosphate) to provide poultry and swine with dietary phosphorus. An ideal phytase supplement should have a high temperature tolerance, allowing it to survive the feed pelleting process, a high specific activity at low pHs, and adequate gastric performance. For this study, the performance of a bacterial phytase was optimized by the use of gene site saturation mutagenesis technology. Beginning with the appA gene from Escherichia coli, a library of clones incorporating all 19 possible amino acid changes and 32 possible codon variations in 431 residues of the sequence was generated and screened for mutants exhibiting improved thermal tolerance. Fourteen single site variants were discovered that retained as much as 10 times the residual activity of the wild-type enzyme after a heated incubation regimen. The addition of eight individual mutations into a single construct (Phy9X) resulted in a protein of maximal fitness, i.e., a highly active phytase with no loss of activity after heating at 62 degrees C for 1 h and 27% of its initial activity after 10 min at 85 degrees C, which was a significant improvement over the appA parental phytase. Phy9X also showed a 3.5-fold enhancement in gastric stability.


Subject(s)
6-Phytase/genetics , 6-Phytase/metabolism , Acid Phosphatase/genetics , Acid Phosphatase/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Gastric Juice/enzymology , Hot Temperature , 6-Phytase/chemistry , Acid Phosphatase/chemistry , Animal Feed , Animals , Dietary Supplements , Enzyme Stability , Escherichia coli/genetics , Escherichia coli Proteins/chemistry , Hydrogen-Ion Concentration , Models, Molecular , Mutagenesis, Site-Directed , Phosphates/metabolism , Point Mutation
7.
Curr Opin Microbiol ; 6(3): 229-35, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12831898

ABSTRACT

Biotechnological techniques enabling the specific removal of sulfur from fossil fuels have been developed. In the past three years there have been important advances in the elucidation of the mechanisms of biodesulfurization; some of the most significant relate to the role of a flavin reductase, DszD, in the enzymology of desulfurization, and to the use of new tools that enable enzyme enhancement via DNA manipulation to influence both the rate and the substrate range of Dsz. Also, a clearer understanding of the unique desulfinase step in the pathway has begun to emerge.


Subject(s)
Bacteria/metabolism , Biotransformation , Fossil Fuels/microbiology , Petroleum/metabolism , Sulfur Compounds/metabolism , Industrial Microbiology/trends , Thiophenes
SELECTION OF CITATIONS
SEARCH DETAIL
...