Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Viruses ; 13(6)2021 06 18.
Article in English | MEDLINE | ID: mdl-34207354

ABSTRACT

Gene/cell therapies are promising strategies for the many presently incurable diseases. A key step in this process is the efficient delivery of genes and gene-editing enzymes to many cell types that may be resistant to lentiviral vector transduction. Herein we describe tuning of a lentiviral gene therapy platform to focus on genetic modifications of resting CD4+ T cells. The motivation for this was to find solutions for HIV gene therapy efforts. Through selection of the optimal viral envelope and further modification to its expression, lentiviral fusogenic delivery into resting CD4+ T cells exceeded 80%, yet Sterile Alpha Motif and HD domain 1 (SAMHD1) dependent and independent intracellular restriction factors within resting T cells then dominate delivery and integration of lentiviral cargo. Overcoming SAMHD1-imposed restrictions, only observed up to 6-fold increase in transduction, with maximal gene delivery and expression of 35%. To test if the biologically limiting steps of lentiviral delivery are reverse transcription and integration, we re-engineered lentiviral vectors to simply express biologically active mRNA to direct transgene expression in the cytoplasm. In this setting, we observed gene expression in up to 65% of resting CD4+ T cells using unconcentrated MS2 lentivirus-like particles (MS2-LVLPs). Taken together, our findings support a gene therapy platform that could be readily used in resting T cell gene editing.


Subject(s)
Gene Expression , Gene Transfer Techniques , Genetic Vectors/genetics , Lentivirus/genetics , Resting Phase, Cell Cycle , Transgenes , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Flow Cytometry , Genotype , Humans , T-Lymphocytes/metabolism , Transduction, Genetic
2.
Front Genet ; 11: 564301, 2020.
Article in English | MEDLINE | ID: mdl-33101384

ABSTRACT

Circular RNAs (circRNAs) regulate mRNA translation by binding to microRNAs (miRNAs), and their expression is altered in diverse disorders, including cancer, cardiovascular disease, and Parkinson's disease. Here, we compare circRNA expression patterns in the temporal cortex and hippocampus of patients with pharmacoresistant mesial temporal lobe epilepsy (MTLE) and healthy controls. Nine circRNAs showed significant differential expression, including circRNA-HOMER1, which is expressed in synapses. Further, we identified miRNA binding sites within the sequences of differentially expressed (DE) circRNAs; expression levels of mRNAs correlated with changes in complementary miRNAs. Gene set enrichment analysis of mRNA targets revealed functions in heterocyclic compound binding, regulation of transcription, and signal transduction, which maintain the structure and function of hippocampal neurons. The circRNA-miRNA-mRNA interaction networks illuminate the molecular changes in MTLE, which may be pathogenic or an effect of the disease or treatments and suggests that DE circRNAs and associated miRNAs may be novel therapeutic targets.

3.
Genomics ; 112(6): 5265-5274, 2020 11.
Article in English | MEDLINE | ID: mdl-32966858

ABSTRACT

The circular transcriptome of human glial cells is an area of neuroscience that has not been thoroughly elucidated. Circular RNAs (circRNAs) have the potential to facilitate the understanding of vast, complex and unknown mechanisms derived from the human transcriptome, including elements of the human brain that are not known and the evolution of the human brain, the complexities of which are not well understood. Moreover, the glial cells have been determined to contribute to human brain evolution. This study presents the first comprehensive analysis of the human brain glia circRNA transcriptome, that is, astrocytes, microglia and oligodendrocytes. After stringent criteria applied to the detection of circRNAs, it was found that the circular transcriptomes of these glia are unique from one another, and hence might be indicative of distinct roles for circRNAs within the brain. This study found 265, 239 and 442 circRNAs comprising the unique circular transcriptome of astrocytes, microglia and oligodendrocytes, respectively. The most abundant circRNAs in these glial cell types are expressed by parent genes co-expressing linear RNAs in low abundance, suggesting spliceosome activity favorable to the back-splicing mechanism instead of canonical splicing activity.


Subject(s)
Neuroglia/metabolism , RNA, Circular/metabolism , Astrocytes/metabolism , Gene Ontology , Humans , Microglia/metabolism , Oligodendroglia/metabolism , RNA-Seq , Transcriptome
4.
Genomics ; 111(6): 1676-1686, 2019 12.
Article in English | MEDLINE | ID: mdl-30465913

ABSTRACT

Long term potentiation (LTP) is a form of synaptic plasticity. In the present study LTP was induced via activation of synaptic NMDA receptors in primary hippocampal neuron cultures from neonate mice and RNA was isolated for RNA sequencing at 20 min following LTP induction. RNA sequencing and differential expression testing was performed to determine the identity and abundance of protein-coding and non-coding RNAs in control and LTP induced neuron cultures. We show that expression levels of a small group of transcripts encoding proteins involved in negative regulation of gene expression (Adcyap1, Id3), protein translation (Rpl22L1), extracellular structure organization (Bgn), intracellular signalling (Ppm1H, Ntsr2, Cldn10) and protein citrullination (PAD2) are downregulated in the stimulated neurons. Our results suggest that the early stages of LTP are accompanied by the remodelling of the biosynthetic machinery, interactions with the extracellular matrix and intracellular signalling pathways at the transcriptional level.


Subject(s)
Hippocampus/metabolism , Long-Term Potentiation/physiology , Neurons/metabolism , Receptors, N-Methyl-D-Aspartate/biosynthesis , Synapses/metabolism , Transcriptome/physiology , Animals , Female , Gene Expression Regulation , Hippocampus/cytology , Male , Mice , Neurons/cytology , Receptors, N-Methyl-D-Aspartate/genetics , Synapses/genetics
5.
AIDS ; 33(2): 199-209, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30562171

ABSTRACT

OBJECTIVE: To determine whether latency can be established and reversed in both proliferating and nonproliferating CD4+ T cells in the same model in vitro. METHODS: Activated CD4+ T cells were infected with either a nonreplication competent, luciferase reporter virus or wild-type full-length enhanced green fluorescent protein (EGFP) reporter virus and cultured for 12 days. The cells were then sorted by flow cytometry to obtain two distinct T-cell populations that did not express the T-cell activation markers, CD69, CD25 and human leukocyte antigen (HLA)-DR: CD69CD25HLA-DR small cells (nonblasts) that had not proliferated in vitro following mitogen stimulation and CD69CD25HLA-DR large cells (which we here call transitional blasts) that had proliferated. The cells were then reactivated with latency-reversing agents and either luciferase or EGFP quantified. RESULTS: Inducible luciferase expression, consistent with latent infection, was observed in nonblasts and transitional blasts following stimulation with either phorbol-myristate-acetate/phytohemagglutinin (3.8 ±â€Š1 and 2.9 ±â€Š0.5 fold above dimethyl sulfoxide, respectively) or romidepsin (2.1 ±â€Š0.6 and 1.8 ±â€Š0.2 fold above dimethyl sulfoxide, respectively). Constitutive expression of luciferase was higher in transitional blasts compared with nonblasts. Using wild-type full-length EGFP reporter virus, inducible virus was observed in nonblasts but not in transitional blasts. No significant difference was observed in the response to latency-reversing agents in either nonblasts or transitional blasts. CONCLUSION: HIV latency can be established in vitro in resting T cells that have not proliferated (nonblasts) and blasts that have proliferated (transitional blasts). This model could potentially be used to assess new strategies to eliminate latency.


Subject(s)
CD4-Positive T-Lymphocytes/physiology , CD4-Positive T-Lymphocytes/virology , Cell Proliferation , HIV/physiology , Virus Latency , Antigens, CD/analysis , Antigens, Differentiation, T-Lymphocyte/analysis , CD4-Positive T-Lymphocytes/chemistry , CD4-Positive T-Lymphocytes/classification , Cells, Cultured , Flow Cytometry , HLA-DR Antigens/analysis , Humans , Interleukin-2 Receptor alpha Subunit/analysis , Lectins, C-Type/analysis , Staining and Labeling
6.
AIDS Res Hum Retroviruses ; 33(12): 1220-1235, 2017 12.
Article in English | MEDLINE | ID: mdl-28797170

ABSTRACT

Maraviroc (MVC) is an allosteric inhibitor of human immunodeficiency virus type 1 (HIV-1) entry, and is the only CCR5 antagonist licensed for use as an anti-HIV-1 therapeutic. It acts by altering the conformation of the CCR5 extracellular loops, rendering CCR5 unrecognizable by the HIV-1 envelope (Env) glycoproteins. This study aimed to understand the mechanisms underlying the development of MVC resistance in HIV-1-infected patients. To do this, we obtained longitudinal plasma samples from eight subjects who experienced treatment failure with phenotypically verified, CCR5-tropic MVC resistance. We then cloned and characterized HIV-1 Envs (n = 77) from plasma of pretreatment (n = 36) and treatment failure (n = 41) samples. Our results showed variation in the magnitude of MVC resistance as measured by reductions in maximal percent inhibition of Env-pseudotyped viruses, which was more pronounced in 293-Affinofile cells compared to other cells with similar levels of CCR5 expression. Amino acid determinants of MVC resistance localized to the V3 Env region and were strain specific. We also observed minimal cross-resistance to other CCR5 antagonists by MVC-resistant strains. We conclude that 293-Affinofile cells are highly sensitive for detecting and measuring MVC resistance through a mechanism that is CCR5-dependent yet independent of CCR5 expression levels. The strain-specific nature of resistance mutations suggests that sequence-based diagnostics and prognostics will need to be more sophisticated than simple position scoring to be useful for managing resistance in subjects taking MVC. Finally, the minimal levels of cross-resistance suggests that recognition of the MVC-modified form of CCR5 does not necessarily lead to recognition of other antagonist-modified forms of CCR5.


Subject(s)
Anti-HIV Agents/therapeutic use , CCR5 Receptor Antagonists/therapeutic use , Cyclohexanes/therapeutic use , Drug Resistance, Viral/genetics , HIV Envelope Protein gp120/genetics , HIV Infections/drug therapy , Receptors, CCR5/drug effects , Triazoles/therapeutic use , Adult , CD4 Lymphocyte Count , Cell Line , Female , HEK293 Cells , HIV-1/drug effects , HIV-1/genetics , Humans , Male , Maraviroc , Middle Aged , Treatment Failure , Virus Internalization/drug effects
7.
Retrovirology ; 13(1): 49, 2016 07 26.
Article in English | MEDLINE | ID: mdl-27459960

ABSTRACT

BACKGROUND: Eradication of HIV cannot be achieved with combination antiretroviral therapy (cART) because of the persistence of long-lived latently infected resting memory CD4(+) T cells. We previously reported that HIV latency could be established in resting CD4(+) T cells in the presence of the chemokine CCL19. To define how CCL19 facilitated the establishment of latent HIV infection, the role of chemokine receptor signalling was explored. RESULTS: In resting CD4(+) T cells, CCL19 induced phosphorylation of RAC-alpha serine/threonine-protein kinase (Akt), nuclear factor kappa B (NF-κB), extracellular-signal-regulated kinase (ERK) and p38. Inhibition of the phosphoinositol-3-kinase (PI3K) and Ras/Raf/Mitogen-activated protein kinase/ERK kinase (MEK)/ERK signalling pathways inhibited HIV integration, without significant reduction in HIV nuclear entry (measured by Alu-LTR and 2-LTR circle qPCR respectively). Inhibiting activation of MEK1/ERK1/2, c-Jun N-terminal kinase (JNK), activating protein-1 (AP-1) and NF-κB, but not p38, also inhibited HIV integration. We also show that HIV integrases interact with Pin1 in CCL19-treated CD4(+) T cells and inhibition of JNK markedly reduced this interaction, suggesting that CCL19 treatment provided sufficient signals to protect HIV integrase from degradation via the proteasome pathway. Infection of CCL19-treated resting CD4(+) T cells with mutant strains of HIV, lacking NF-κB binding sites in the HIV long terminal repeat (LTR) compared to infection with wild type virus, led to a significant reduction in integration by up to 40-fold (range 1-115.4, p = 0.03). This was in contrast to only a modest reduction of 5-fold (range 1.7-11, p > 0.05) in fully activated CD4(+) T cells infected with the same mutants. Finally, we demonstrated significant differences in integration sites following HIV infection of unactivated, CCL19-treated, and fully activated CD4(+) T cells. CONCLUSIONS: HIV integration in CCL19-treated resting CD4(+) T cells depends on NF-κB signalling and increases the stability of HIV integrase, which allow subsequent integration and establishment of latency. These findings have implications for strategies needed to prevent the establishment, and potentially reverse, latent infection.


Subject(s)
CD4-Positive T-Lymphocytes/virology , Chemokine CCL19/pharmacology , NF-kappa B/metabolism , Receptors, CCR/genetics , Virus Integration , Virus Latency , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/physiology , Gene Expression Regulation, Viral/drug effects , HIV Integrase/genetics , HIV-1/enzymology , HIV-1/physiology , Humans , NF-kappa B/genetics , Receptors, CCR/metabolism , Signal Transduction/drug effects , Virus Integration/drug effects , Virus Latency/drug effects , Virus Replication/drug effects
8.
Sci Rep ; 6: 29131, 2016 06 30.
Article in English | MEDLINE | ID: mdl-27358023

ABSTRACT

DNA vaccines are cost-effective to manufacture on a global scale and Tat-based DNA vaccines have yielded protective outcomes in preclinical and clinical models of human immunodeficiency virus (HIV), highlighting the potential of such vaccines. However, Tat-based DNA vaccines have been poorly immunogenic, and despite the administration of multiple doses and/or the addition of adjuvants, these vaccines are not in general use. In this study, we improved Tat immunogenicity by fusing it with the oligomerisation domain of a chimeric C4-binding protein (C4b-p), termed IMX313, resulting in Tat heptamerisation and linked Tat to the leader sequence of tissue plasminogen activator (TPA) to ensure that the bulk of heptamerised Tat is secreted. Mice vaccinated with secreted Tat fused to IMX313 (pVAX-sTat-IMX313) developed higher titres of Tat-specific serum IgG, mucosal sIgA and cell-mediated immune (CMI) responses, and showed superior control of EcoHIV infection, a surrogate murine HIV challenge model, compared with animals vaccinated with other test vaccines. Given the crucial contribution of Tat to HIV-1 pathogenesis and the precedent of Tat-based DNA vaccines in conferring some level of protection in animal models, we believe that the virologic control demonstrated with this novel multimerised Tat vaccine highlights the promise of this vaccine candidate for humans.


Subject(s)
Apoptosis Regulatory Proteins , HIV Infections , Recombinant Fusion Proteins , Vaccines, DNA , tat Gene Products, Human Immunodeficiency Virus , Animals , Humans , Mice , Apoptosis Regulatory Proteins/administration & dosage , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/immunology , HIV Antibodies/immunology , HIV Infections/immunology , HIV Infections/prevention & control , HIV Infections/virology , HIV-1/drug effects , HIV-1/immunology , HIV-1/pathogenicity , Immunity, Cellular , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Survivin , tat Gene Products, Human Immunodeficiency Virus/administration & dosage , tat Gene Products, Human Immunodeficiency Virus/genetics , tat Gene Products, Human Immunodeficiency Virus/immunology , Vaccines, DNA/administration & dosage , Vaccines, DNA/genetics , Vaccines, DNA/immunology
9.
Curr Opin HIV AIDS ; 11(4): 371-5, 2016 07.
Article in English | MEDLINE | ID: mdl-26945147

ABSTRACT

PURPOSE OF REVIEW: To review current knowledge of viral reservoirs in the central nervous system (CNS) and identify the CNS-specific barriers and strategies to cure human immunodeficiency virus type 1 (HIV-1) within the brain. RECENT FINDINGS: The cumulative data of HIV-1 infection of the CNS support the ability of the CNS to act as a viral reservoir for HIV-1. The HIV-1 viral strains found in the CNS are distinct to those found in other parts of the body. These differences have been well documented for env and also extend to the viral promoter, the long terminal repeat, and influence the ability of the virus to replicate, establish latency and respond to latency-reversing agents (LRAs). In addition, the bioavailability and activity of LRAs and antiretrovirals within the CNS suggest altered properties compared with the blood, which may influence their effectiveness. Selected LRAs were shown to have reduced effectiveness against CNS-derived viral strains compared with blood-derived strains from the same patients. Finally, altered immune surveillance within the CNS may also interfere with the efficiency of cure strategies within this compartment. SUMMARY: Together, these data suggest that the CNS viral reservoir is unique and presents a distinct set of challenges that need to be overcome to ensure successful viral elimination within this compartment. Future studies will need to develop CNS-active LRAs and biomarkers to enable monitoring and evaluation of treatment outcomes within the CNS during HIV-1 cure clinical trials.


Subject(s)
Central Nervous System/virology , HIV Infections/virology , HIV-1/physiology , Virus Latency , Biomedical Research/trends , Drug Therapy/methods , Humans
10.
J Neurovirol ; 22(4): 455-63, 2016 08.
Article in English | MEDLINE | ID: mdl-26727904

ABSTRACT

Despite the success of combination antiretroviral therapy (cART), HIV persists in long lived latently infected cells in the blood and tissue, and treatment is required lifelong. Recent clinical studies have trialed latency-reversing agents (LRA) as a method to eliminate latently infected cells; however, the effects of LRA on the central nervous system (CNS), a well-known site of virus persistence on cART, are unknown. In this study, we evaluated the toxicity and potency of a panel of commonly used and well-known LRA (panobinostat, romidepsin, vorinostat, chaetocin, disulfiram, hexamethylene bisacetamide [HMBA], and JQ-1) in primary fetal astrocytes (PFA) as well as monocyte-derived macrophages as a cellular model for brain perivascular macrophages. We show that most LRA are non-toxic in these cells at therapeutic concentrations. Additionally, romidepsin, JQ-1, and panobinostat were the most potent at inducing viral transcription, with greater magnitude observed in PFA. In contrast, vorinostat, chaetocin, disulfiram, and HMBA all demonstrated little or no induction of viral transcription. Together, these data suggest that some LRA could potentially activate transcription in latently infected cells in the CNS. We recommend that future trials of LRA also examine the effects of these agents on the CNS via examination of cerebrospinal fluid.


Subject(s)
HIV-1/drug effects , Histone Deacetylase Inhibitors/pharmacology , Neurons/drug effects , Virus Activation/drug effects , Virus Latency/drug effects , Virus Replication/drug effects , Acetamides/pharmacology , Astrocytes/drug effects , Astrocytes/metabolism , Astrocytes/virology , Azepines/pharmacology , Cell Line , Cell Survival/drug effects , Depsipeptides/pharmacology , Disulfiram/pharmacology , Fetus , HIV-1/genetics , HIV-1/metabolism , Humans , Hydroxamic Acids/pharmacology , Indoles/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Macrophages/virology , Neurons/metabolism , Neurons/virology , Panobinostat , Piperazines/pharmacology , Primary Cell Culture , Transcription, Genetic/drug effects , Triazoles/pharmacology , Virus Activation/genetics , Virus Latency/genetics , Virus Replication/genetics , Vorinostat
11.
J Neurovirol ; 21(5): 535-43, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26037113

ABSTRACT

This investigation aimed to assess whether inhibition of cathecol-O-methyl transferase (COMT) by tolcapone could provide neuroprotection against HIV-associated neurodegenerative effects. This study was conducted based on a previous work, which showed that a single nucleotide polymorphism (SNP) at position 158 (val158met) in COMT, resulted in 40 % lower COMT activity. Importantly, this reduction confers a protective effect against HIV-associated neurocognitive disorders (HAND), which have been linked to HIV-associated brain changes. SH-SY5Y-differentiated neurons were exposed to macrophage-propagated HIV (neurotropic MACS2-Br strain) in the presence or absence of tolcapone for 6 days. RNA was extracted, and qPCR was performed using Qiagen RT2 custom array consisting of genes for neuronal and synaptic integrity, COMT and pro-inflammatory markers. Immunofluorescence was conducted to validate the gene expression changes at the protein level. Our findings demonstrated that HIV significantly increased the messenger RNA (mRNA) expression of COMT while reducing the expression of microtubule-associated protein 2 (MAP2) (p = 0.0015) and synaptophysin (SYP) (p = 0.012) compared to control. A concomitant exposure of tolcapone ameliorated the perturbed expression of MAP2 (p = 0.009) and COMT (p = 0.024) associated with HIV. Immunofluorescence revealed a trend reduction of SYP and MAP2 with exposure to HIV and that concomitant exposure of tolcapone increased SYP (p = 0.016) compared to HIV alone. Our findings demonstrated in vitro that inhibition of COMT can ameliorate HIV-associated neurodegenerative changes that resulted in the decreased expression of the structural and synaptic components MAP2 and SYP. As HIV-associated dendritic and synaptic damage are contributors to HAND, inhibition of COMT may represent a potential strategy for attenuating or preventing some of the symptoms of HAND.


Subject(s)
Benzophenones/pharmacology , Catechol O-Methyltransferase Inhibitors/pharmacology , Catechol O-Methyltransferase/metabolism , HIV/enzymology , Microtubule-Associated Proteins/metabolism , Neurons/metabolism , Nitrophenols/pharmacology , Synaptophysin/metabolism , Cell Line , Fluorescent Antibody Technique , HIV/drug effects , Humans , Neurons/virology , Real-Time Polymerase Chain Reaction , Tolcapone , Transcriptome
12.
Sci Rep ; 5: 8543, 2015 Feb 25.
Article in English | MEDLINE | ID: mdl-25712827

ABSTRACT

Over the past decade antiretroviral drugs have dramatically improved the prognosis for HIV-1 infected individuals, yet achieving better access to vulnerable populations remains a challenge. The principal obstacle to the CCR5-antagonist, maraviroc, from being more widely used in anti-HIV-1 therapy regimens is that the pre-treatment genotypic "tropism tests" to determine virus susceptibility to maraviroc have been developed primarily for HIV-1 subtype B strains, which account for only 10% of infections worldwide. We therefore developed PhenoSeq, a suite of HIV-1 genotypic tropism assays that are highly sensitive and specific for establishing the tropism of HIV-1 subtypes A, B, C, D and circulating recombinant forms of subtypes AE and AG, which together account for 95% of HIV-1 infections worldwide. The PhenoSeq platform will inform the appropriate use of maraviroc and future CCR5 blocking drugs in regions of the world where non-B HIV-1 predominates, which are burdened the most by the HIV-1 pandemic.


Subject(s)
HIV-1/physiology , Viral Tropism/genetics , Algorithms , Amino Acid Sequence , CCR5 Receptor Antagonists/therapeutic use , Computational Biology , Cyclohexanes/therapeutic use , Genotype , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/genetics , HIV Envelope Protein gp120/metabolism , HIV Infections/drug therapy , Humans , Maraviroc , Mutation , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Phenotype , Receptors, CCR5/chemistry , Receptors, CCR5/metabolism , Triazoles/therapeutic use
13.
J Neurovirol ; 21(3): 290-300, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25060300

ABSTRACT

Human immunodeficiency virus type-1 (HIV-1) invades the central nervous system (CNS) during acute infection which can result in HIV-associated neurocognitive disorders in up to 50% of patients, even in the presence of combination antiretroviral therapy (cART). Within the CNS, productive HIV-1 infection occurs in the perivascular macrophages and microglia. Astrocytes also become infected, although their infection is restricted and does not give rise to new viral particles. The major barrier to the elimination of HIV-1 is the establishment of viral reservoirs in different anatomical sites throughout the body and viral persistence during long-term treatment with cART. While the predominant viral reservoir is believed to be resting CD4(+) T cells in the blood, other anatomical compartments including the CNS, gut-associated lymphoid tissue, bone marrow, and genital tract can also harbour persistently infected cellular reservoirs of HIV-1. Viral latency is predominantly responsible for HIV-1 persistence and is most likely governed at the transcriptional level. Current clinical trials are testing transcriptional activators, in the background of cART, in an attempt to purge these viral reservoirs and reverse viral latency. These strategies aim to activate viral transcription in cells constituting the viral reservoir, so they can be recognised and cleared by the immune system, while new rounds of infection are blocked by co-administration of cART. The CNS has several unique characteristics that may result in differences in viral transcription and in the way latency is established. These include CNS-specific cell types, different transcription factors, altered immune surveillance, and reduced antiretroviral drug bioavailability. A comprehensive understanding of viral transcription and latency in the CNS is required in order to determine treatment outcomes when using transcriptional activators within the CNS.


Subject(s)
Brain/virology , Disease Reservoirs/virology , HIV Infections/virology , HIV-1/physiology , Transcriptional Activation/physiology , Humans , Virus Latency/physiology
14.
PLoS One ; 9(11): e113341, 2014.
Article in English | MEDLINE | ID: mdl-25409334

ABSTRACT

Histone deacetylase inhibitors (HDACi) can induce human immunodeficiency virus (HIV) transcription from the HIV long terminal repeat (LTR). However, ex vivo and in vivo responses to HDACi are variable and the activity of HDACi in cells other than T-cells have not been well characterised. Here, we developed a novel assay to determine the activity of HDACi on patient-derived HIV LTRs in different cell types. HIV LTRs from integrated virus were amplified using triple-nested Alu-PCR from total memory CD4+ T-cells (CD45RO+) isolated from HIV-infected patients prior to and following suppressive antiretroviral therapy. NL4-3 or patient-derived HIV LTRs were cloned into the chromatin forming episomal vector pCEP4, and the effect of HDACi investigated in the astrocyte and epithelial cell lines SVG and HeLa, respectively. There were no significant differences in the sequence of the HIV LTRs isolated from CD4+ T-cells prior to and after 18 months of combination antiretroviral therapy (cART). We found that in both cell lines, the HDACi panobinostat, trichostatin A, vorinostat and entinostat activated patient-derived HIV LTRs to similar levels seen with NL4-3 and all patient derived isolates had similar sensitivity to maximum HDACi stimulation. We observed a marked difference in the maximum fold induction of luciferase by HDACi in HeLa and SVG, suggesting that the effect of HDACi may be influenced by the cellular environment. Finally, we observed significant synergy in activation of the LTR with vorinostat and the viral protein Tat. Together, our results suggest that the LTR sequence of integrated virus is not a major determinant of a functional response to an HDACi.


Subject(s)
HIV Infections/blood , HIV Long Terminal Repeat/drug effects , Histone Deacetylase Inhibitors/pharmacology , T-Lymphocytes/virology , Adult , Aged , Anti-HIV Agents/therapeutic use , Benzamides/pharmacology , Cell Line , HIV Infections/drug therapy , HIV Infections/virology , HeLa Cells , Humans , Hydroxamic Acids/pharmacology , Indoles/pharmacology , Observational Studies as Topic , Panobinostat , Phylogeny , Pyridines/pharmacology , T-Lymphocytes/drug effects , Vorinostat , tat Gene Products, Human Immunodeficiency Virus/pharmacology
15.
Curr Opin HIV AIDS ; 9(6): 552-8, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25203642

ABSTRACT

PURPOSE OF REVIEW: To summarize the evidence in the literature that supports the central nervous system (CNS) as a viral reservoir for HIV-1 and to prioritize future research efforts. RECENT FINDINGS: HIV-1 DNA has been detected in brain tissue of patients with undetectable viral load or neurocognitive disorders, and is associated with long-lived cells such as astrocytes and microglia. In neurocognitively normal patients, HIV-1 can be found at high frequency in these cells (4% of astrocytes and 20% of macrophages). CNS cells have unique molecular mechanisms to suppress viral replication and induce latency, which include increased expression of dominant negative transcription factors and suppressive epigenetic factors. There is also evidence of continued inflammation in patients lacking a CNS viral load, suggesting the production and activity of viral neurotoxins (for example, Tat). SUMMARY: Together, these findings provide evidence that the CNS can potentially act as a viral reservoir of HIV-1. However, the majority of these studies were performed in historical cohorts (absence of combination antiretroviral therapy or presence of viral load), which do not reflect modern day patients (combination antiretroviral therapy-treated and undetectable viral load). Future studies will need to examine patient samples with these characteristics to conclusively determine whether the CNS represents a relevant and important viral reservoir.


Subject(s)
HIV Infections/virology , HIV-1/physiology , Central Nervous System/cytology , Central Nervous System/immunology , Central Nervous System/virology , Humans , Organ Specificity , Viral Load , Virus Latency
16.
PLoS One ; 9(2): e90620, 2014.
Article in English | MEDLINE | ID: mdl-24587404

ABSTRACT

Astrocytes are extensively infected with HIV-1 in vivo and play a significant role in the development of HIV-1-associated neurocognitive disorders. Despite their extensive infection, little is known about how astrocytes become infected, since they lack cell surface CD4 expression. In the present study, we investigated the fate of HIV-1 upon infection of astrocytes. Astrocytes were found to bind and harbor virus followed by biphasic decay, with HIV-1 detectable out to 72 hours. HIV-1 was observed to associate with CD81-lined vesicle structures. shRNA silencing of CD81 resulted in less cell-associated virus but no loss of co-localization between HIV-1 and CD81. Astrocytes supported trans-infection of HIV-1 to T-cells without de novo virus production, and the virus-containing compartment required 37°C to form, and was trypsin-resistant. The CD81 compartment observed herein, has been shown in other cell types to be a relatively protective compartment. Within astrocytes, this compartment may be actively involved in virus entry and/or spread. The ability of astrocytes to transfer virus, without de novo viral synthesis suggests they are capable of sequestering and protecting virus and thus, they could potentially facilitate viral dissemination in the CNS.


Subject(s)
Astrocytes/metabolism , HIV-1/metabolism , Tetraspanin 28/metabolism , Virus Internalization , Astrocytes/virology , Cell Line , Coculture Techniques , HEK293 Cells , HIV-1/physiology , Host-Pathogen Interactions , Humans , Microscopy, Fluorescence , Protein Binding , RNA Interference , T-Lymphocytes/virology , Temperature , Tetraspanin 28/genetics , Time Factors , Transport Vesicles/metabolism , Virus Replication
17.
AIDS ; 27(18): 2853-62, 2013 Nov 28.
Article in English | MEDLINE | ID: mdl-24189584

ABSTRACT

OBJECTIVES: To compare the potency, toxicity and mechanism of action of multiple histone deacetylase inhibitors (HDACi) in activating HIV production from latency. DESIGN: In-vitro analysis of HDACi in a primary T-cell model of HIV latency and latently infected cell lines. METHODS: Latently infected chemokine ligand 19 (CCL19)-treated CD4⁺ T cells and the latently infected cell lines ACH2 and J-Lat were treated with a panel of HDACi, including entinostat, vorinostat, panonbinostat and MCT3. Viral production and cell viability were compared. Expression of cellular HDACs was measured by western blot and PCR. Association of HDACs with the HIV long-terminal repeat (LTR) using latently infected CCL19-treated primary CD4⁺ T cells in the presence and absence of specific HDACi was determined by chromatin immunoprecipitation (ChIP). RESULTS: We demonstrated considerable variation in the potency and toxicity of HDACi in latently infected primary CD4⁺ T cells and cell lines. All HDACi tested activated HIV production in latently infected primary T cells with greatest potency demonstrated with entinostat and vorinostat and greatest toxicity with panobinostat. Following the addition of HDACi in vitro, there were no changes in markers of T-cell activation or expression of the HIV coreceptors chemokine (C-X-C motif) receptor 4 (CXCR4) or chemokine (C-C motif) receptor type 5 (CCR5). ChIP analysis of latently infected CCL19-treated primary CD4⁺ T cells showed binding by HDAC1, HDAC2 and HDAC3 to the LTR with removal of HDAC1 and HDAC2 following treatment with the HDACi vorinostat and HDAC1 only following treatment with entinostat. CONCLUSION: The HDACi entinostat, selective for inhibition of class I HDACs, induced virus expression in latently infected primary CD4⁺ T cells making this compound an attractive novel option for future clinical trials.


Subject(s)
Benzamides/pharmacology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/virology , HIV/physiology , Histone Deacetylase Inhibitors/pharmacology , Pyridines/pharmacology , Virus Latency/drug effects , Virus Replication/drug effects , Blotting, Western , Cells, Cultured , Chromatin Immunoprecipitation , Humans , Polymerase Chain Reaction
18.
PLoS One ; 8(6): e65950, 2013.
Article in English | MEDLINE | ID: mdl-23824043

ABSTRACT

HIV-1 subtype C (C-HIV) is responsible for most HIV-1 cases worldwide. Although the pathogenesis of C-HIV is thought to predominantly involve CCR5-restricted (R5) strains, we do not have a firm understanding of how frequently CXCR4-using (X4 and R5X4) variants emerge in subjects with progressive C-HIV infection. Nor do we completely understand the molecular determinants of coreceptor switching by C-HIV variants. Here, we characterized a panel of HIV-1 envelope glycoproteins (Envs) (n = 300) cloned sequentially from plasma of 21 antiretroviral therapy (ART)-naïve subjects who experienced progression from chronic to advanced stages of C-HIV infection, and show that CXCR4-using C-HIV variants emerged in only one individual. Mutagenesis studies and structural models suggest that the evolution of R5 to X4 variants in this subject principally involved acquisition of an "Ile-Gly" insertion in the gp120 V3 loop and replacement of the V3 "Gly-Pro-Gly" crown with a "Gly-Arg-Gly" motif, but that the accumulation of additional gp120 "scaffold" mutations was required for these V3 loop changes to confer functional effects. In this context, either of the V3 loop changes could confer possible transitional R5X4 phenotypes, but when present together they completely abolished CCR5 usage and conferred the X4 phenotype. Our results show that the emergence of CXCR4-using strains is rare in this cohort of untreated individuals with advanced C-HIV infection. In the subject where X4 variants did emerge, alterations in the gp120 V3 loop were necessary but not sufficient to confer CXCR4 usage.


Subject(s)
HIV Infections/metabolism , Receptors, CCR5/metabolism , Receptors, CXCR4/metabolism , Cohort Studies , HIV-1 , Humans , Longitudinal Studies
19.
PLoS One ; 8(4): e62196, 2013.
Article in English | MEDLINE | ID: mdl-23614033

ABSTRACT

HIV-1 establishes infection in astrocytes and macroage-lineage cells of the central nervous system (CNS). Certain antiretroviral drugs (ARVs) can penetrate the CNS, and are therefore often used in neurologically active combined antiretroviral therapy (Neuro-cART) regimens, but their relative activity in the different susceptible CNS cell populations is unknown. Here, we determined the HIV-1 inhibitory activity of CNS-penetrating ARVs in astrocytes and macrophage-lineage cells. Primary human fetal astrocytes (PFA) and the SVG human astrocyte cell line were used as in vitro models for astrocyte infection, and monocyte-derived macrophages (MDM) were used as an in vitro model for infection of macrophage-lineage cells. The CNS-penetrating ARVs tested were the nucleoside reverse transcriptase inhibitors (NRTIs) abacavir (ABC), lamivudine (3TC), stavudine (d4T) and zidovudine (ZDV), the non-NRTIs efavirenz (EFV), etravirine (ETR) and nevirapine (NVP), and the integrase inhibitor raltegravir (RAL). Drug inhibition assays were performed using single-round HIV-1 entry assays with luciferase viruses pseudotyped with HIV-1 YU-2 envelope or vesicular stomatitis virus G protein (VSV-G). All the ARVs tested could effectively inhibit HIV-1 infection in macrophages, with EC90s below concentrations known to be achievable in the cerebral spinal fluid (CSF). Most of the ARVs had similar potency in astrocytes, however the NRTIs 3TC, d4T and ZDV had insufficient HIV-1 inhibitory activity in astrocytes, with EC90s 12-, 187- and 110-fold greater than achievable CSF concentrations, respectively. Our data suggest that 3TC, d4T and ZDV may not adequately target astrocyte infection in vivo, which has potential implications for their inclusion in Neuro-cART regimens.


Subject(s)
Anti-HIV Agents/pharmacology , Astrocytes/virology , HIV-1/drug effects , Stavudine/pharmacology , Zidovudine/pharmacology , Cell Line , Humans , Reverse Transcriptase Inhibitors
20.
Virology ; 442(1): 51-8, 2013 Jul 20.
Article in English | MEDLINE | ID: mdl-23602007

ABSTRACT

Human immunodeficiency virus type 1 (HIV-1) resistance to CCR5 antagonists, including maraviroc (MVC), results from alterations in the HIV-1 envelope glycoproteins (Env) enabling recognition of antagonist-bound CCR5. Here, we characterized tropism alterations for CD4+ T-cell subsets and macrophages by Envs from two subjects who developed MVC resistance in vivo, which displayed either relatively efficient or inefficient recognition of MVC-bound CCR5. We show that MVC-resistant Env with efficient recognition of drug-bound CCR5 displays a tropism shift for CD4+ T-cell subsets associated with increased infection of central memory T-cells and reduced infection of effector memory and transitional memory T-cells, and no change in macrophage infectivity. In contrast, MVC-resistant Env with inefficient recognition of drug-bound CCR5 displays no change in tropism for CD4+ T-cell subsets, but exhibits a significant reduction in macrophage infectivity. The pattern of HIV-1 tropism alterations for susceptible cells may therefore be variable in subjects with MVC resistance.


Subject(s)
CCR5 Receptor Antagonists , CD4-Positive T-Lymphocytes/virology , Cyclohexanes/pharmacology , Drug Resistance, Viral , HIV Fusion Inhibitors/pharmacology , HIV-1/drug effects , HIV-1/pathogenicity , Macrophages/virology , Triazoles/pharmacology , Cell Line , HIV Envelope Protein gp120/metabolism , Humans , Maraviroc , T-Lymphocyte Subsets/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...