Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Front Oncol ; 13: 1150349, 2023.
Article in English | MEDLINE | ID: mdl-36994206

ABSTRACT

Introduction: Tumour mutational burden (TMB) is an important emerging biomarker for immune checkpoint inhibitors (ICI). The stability of TMB values across distinct EBUS tumour regions is not well defined in advanced lung cancer patients. Methods: This study included a whole-genome sequencing cohort (n=11, LxG cohort) and a targeted Oncomine TML panel cohort (n=10, SxD cohort), where paired primary and metastatic samples were obtained by endobronchial ultrasound transbronchial needle aspiration (EBUS-TBNA). Results: The LxG cohort displayed a strong correlation between the paired primary and metastatic sites, with a median TMB score of 7.70 ± 5.39 and 8.31 ± 5.88 respectively. Evaluation of the SxD cohort demonstrated greater inter-tumoural TMB heterogeneity, where Spearman correlation between the primary and metastatic sites fell short of significance. Whilst median TMB scores were not significantly different between the two sites, 3 out of 10 paired samples were discordant when using a TMB cut-off of 10 mutations per Mb. In addition, PD-L1 copy number and KRAS mutations were assessed, demonstrating the feasibility of performing multiple molecular tests relevant to ICI treatment using a single EBUS sample. We also observed good consistency in PD-L1 copy number and KRAS mutation, where cut-off estimates were consistent across the primary and metastatic sites. Conclusions: Assessment of TMB acquired by EBUS from multiple sites is highly feasible and has the potential to improve accuracy of TMB panels as a companion diagnostic test. We demonstrate similar TMB values across primary and metastatic sites, however 3 out of 10 samples displayed inter-tumoural heterogeneity that would alter clinical management.

2.
Pathogens ; 12(2)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36839561

ABSTRACT

Vascular wilt caused by the ascomycete fungal pathogen Fusarium oxysporum f. sp. cubense (Foc) is a major constraint of banana production around the world. The virulent race, namely Tropical Race 4, can infect all Cavendish-type banana plants and is now widespread across the globe, causing devastating losses to global banana production. In this study, we characterized Foc Subtropical Race 4 (STR4) resistance in a wild banana relative which, through estimated genome size and ancestry analysis, was confirmed to be Musa acuminata ssp. malaccensis. Using a self-derived F2 population segregating for STR4 resistance, quantitative trait loci sequencing (QTL-seq) was performed on bulks consisting of resistant and susceptible individuals. Changes in SNP index between the bulks revealed a major QTL located on the distal end of the long arm of chromosome 3. Multiple resistance genes are present in this region. Identification of chromosome regions conferring resistance to Foc can facilitate marker assisted selection in breeding programs and paves the way towards identifying genes underpinning resistance.

3.
Sci Rep ; 11(1): 667, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33436720

ABSTRACT

In this study we used the Illumina Infinium Methylation array to investigate in a cohort of matched archival human tissue samples (n = 32) from 14 individuals with soft tissue sarcomas if genome-wide methylation changes occur during metastatic and recurrent (Met/Rec) disease. A range of sarcoma types were selected for this study: leiomyosarcoma (LMS), myxofibrosarcoma (MFS), rhabdomyosarcoma (RMS) and synovial sarcoma (SS). We identified differential methylation in all Met/Rec matched samples, demonstrating that epigenomic differences develop during the clonal evolution of sarcomas. Differentially methylated regions and genes were detected, not been previously implicated in sarcoma progression, including at PTPRN2 and DAXX in LMS, WT1-AS and TNXB in SS, VENTX and NTRK3 in pleomorphic RMS and MEST and the C14MC / miR-379/miR-656 in MFS. Our overall findings indicate the presence of objective epigenetic differences across primary and Met/Rec human tissue samples not previously reported.


Subject(s)
Biomarkers, Tumor/genetics , DNA Methylation , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Neoplasm Metastasis/pathology , Neoplasm Recurrence, Local/pathology , Sarcoma/pathology , Adult , Aged , Female , Gene Expression Profiling , Humans , Male , Middle Aged , Neoplasm Metastasis/genetics , Neoplasm Recurrence, Local/genetics , Prognosis , Sarcoma/genetics
4.
PLoS Pathog ; 17(1): e1009215, 2021 01.
Article in English | MEDLINE | ID: mdl-33439897

ABSTRACT

Poxvirus systems have been extensively used as vaccine vectors. Herein a RNA-Seq analysis of intramuscular injection sites provided detailed insights into host innate immune responses, as well as expression of vector and recombinant immunogen genes, after vaccination with a new multiplication defective, vaccinia-based vector, Sementis Copenhagen Vector. Chikungunya and Zika virus immunogen mRNA and protein expression was associated with necrosing skeletal muscle cells surrounded by mixed cellular infiltrates. The multiple adjuvant signatures at 12 hours post-vaccination were dominated by TLR3, 4 and 9, STING, MAVS, PKR and the inflammasome. Th1 cytokine signatures were dominated by IFNγ, TNF and IL1ß, and chemokine signatures by CCL5 and CXCL12. Multiple signatures associated with dendritic cell stimulation were evident. By day seven, vaccine transcripts were absent, and cell death, neutrophil, macrophage and inflammation annotations had abated. No compelling arthritis signatures were identified. Such injection site vaccinology approaches should inform refinements in poxvirus-based vector design.


Subject(s)
Genetic Vectors/administration & dosage , Immunity, Innate/immunology , Injection Site Reaction/immunology , Vaccination/methods , Vaccines, Synthetic/administration & dosage , Vaccinia/immunology , Zika Virus Infection/immunology , Animals , Female , Genetic Vectors/genetics , Genome, Viral , Mice , Mice, Inbred C57BL , RNA-Seq , Vaccines, Synthetic/immunology , Vaccinia/genetics , Vaccinia/metabolism , Vaccinia/virology , Vaccinia virus/isolation & purification , Vaccinology , Zika Virus/isolation & purification , Zika Virus Infection/genetics , Zika Virus Infection/metabolism , Zika Virus Infection/virology
5.
Sci Data ; 7(1): 129, 2020 04 29.
Article in English | MEDLINE | ID: mdl-32350262

ABSTRACT

Whole exome sequencing (WES) is a popular and successful technology which is widely used in both research and clinical settings. However, there is a paucity of reference data for Aboriginal Australians to underpin the translation of health-based genomic research. Here we provide a catalogue of variants called after sequencing the exomes of 50 Aboriginal individuals from the Northern Territory (NT) of Australia and compare these to 72 previously published exomes from a Western Australian (WA) population of Martu origin. Sequence data for both NT and WA samples were processed using an 'intersect-then-combine' (ITC) approach, using GATK and SAMtools to call variants. A total of 289,829 variants were identified in at least one individual in the NT cohort and 248,374 variants in at least one individual in the WA cohort. Of these, 166,719 variants were present in both cohorts, whilst 123,110 variants were private to the NT cohort and 81,655 were private to the WA cohort. Our data set provides a useful reference point for genomic studies on Aboriginal Australians.


Subject(s)
Exome , Native Hawaiian or Other Pacific Islander/genetics , Cohort Studies , Genomics , Humans , Northern Territory , Western Australia
6.
BMC Mol Cell Biol ; 21(1): 26, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32293262

ABSTRACT

BACKGROUND: Progesterone receptor membrane component 1 (PGRMC1) is often elevated in cancers, and exists in alternative states of phosphorylation. A motif centered on PGRMC1 Y180 was evolutionarily acquired concurrently with the embryological gastrulation organizer that orchestrates vertebrate tissue differentiation. RESULTS: Here, we show that mutagenic manipulation of PGRMC1 phosphorylation alters cell metabolism, genomic stability, and CpG methylation. Each of several mutants elicited distinct patterns of genomic CpG methylation. Mutation of S57A/Y180/S181A led to increased net hypermethylation, reminiscent of embryonic stem cells. Pathways enrichment analysis suggested modulation of processes related to animal cell differentiation status and tissue identity, as well as cell cycle control and ATM/ATR DNA damage repair regulation. We detected different genomic mutation rates in culture. CONCLUSIONS: A companion manuscript shows that these cell states dramatically affect protein abundances, cell and mitochondrial morphology, and glycolytic metabolism. We propose that PGRMC1 phosphorylation status modulates cellular plasticity mechanisms relevant to early embryological tissue differentiation.


Subject(s)
Phosphorylation , Receptors, Progesterone , Animals , Cell Differentiation , Cell Line , DNA Methylation , Disease , Embryology , Epigenomics , Humans , Membrane Proteins/biosynthesis , Membrane Proteins/metabolism , Mice , Mutation , Mutation Rate , Protein Processing, Post-Translational , Receptors, Progesterone/biosynthesis , Receptors, Progesterone/metabolism
7.
J Infect Dis ; 216(11): 1460-1470, 2017 12 12.
Article in English | MEDLINE | ID: mdl-29029143

ABSTRACT

Background: Rheumatic heart disease (RHD) after group A streptococcus (GAS) infections is heritable and prevalent in Indigenous populations. Molecular mimicry between human and GAS proteins triggers proinflammatory cardiac valve-reactive T cells. Methods: Genome-wide genetic analysis was undertaken in 1263 Aboriginal Australians (398 RHD cases; 865 controls). Single-nucleotide polymorphisms were genotyped using Illumina HumanCoreExome BeadChips. Direct typing and imputation was used to fine-map the human leukocyte antigen (HLA) region. Epitope binding affinities were mapped for human cross-reactive GAS proteins, including M5 and M6. Results: The strongest genetic association was intronic to HLA-DQA1 (rs9272622; P = 1.86 × 10-7). Conditional analyses showed rs9272622 and/or DQA1*AA16 account for the HLA signal. HLA-DQA1*0101_DQB1*0503 (odds ratio [OR], 1.44; 95% confidence interval [CI], 1.09-1.90; P = 9.56 × 10-3) and HLA-DQA1*0103_DQB1*0601 (OR, 1.27; 95% CI, 1.07-1.52; P = 7.15 × 10-3) were risk haplotypes; HLA_DQA1*0301-DQB1*0402 (OR 0.30, 95%CI 0.14-0.65, P = 2.36 × 10-3) was protective. Human myosin cross-reactive N-terminal and B repeat epitopes of GAS M5/M6 bind with higher affinity to DQA1/DQB1 alpha/beta dimers for the 2-risk haplotypes than the protective haplotype. Conclusions: Variation at HLA_DQA1-DQB1 is the major genetic risk factor for RHD in Aboriginal Australians studied here. Cross-reactive epitopes bind with higher affinity to alpha/beta dimers formed by risk haplotypes, supporting molecular mimicry as the key mechanism of RHD pathogenesis.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , HLA Antigens/genetics , Molecular Mimicry , Rheumatic Heart Disease/genetics , Rheumatic Heart Disease/immunology , Streptococcal Infections/genetics , Streptococcal Infections/immunology , Australia , Bacterial Outer Membrane Proteins/immunology , Cross Reactions/immunology , Epitopes/immunology , Genotype , HLA Antigens/immunology , HLA-DQ Antigens/chemistry , HLA-DQ Antigens/classification , HLA-DQ Antigens/genetics , HLA-DQ Antigens/immunology , HLA-DQ alpha-Chains/chemistry , HLA-DQ alpha-Chains/classification , HLA-DQ alpha-Chains/genetics , HLA-DQ alpha-Chains/immunology , Haplotypes , Humans , Myosins/immunology , Odds Ratio , Polymorphism, Single Nucleotide/genetics , Rheumatic Heart Disease/microbiology , Risk Factors , Streptococcus/pathogenicity
8.
PLoS Genet ; 13(6): e1006328, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28640878

ABSTRACT

Traditional genome-wide scans for positive selection have mainly uncovered selective sweeps associated with monogenic traits. While selection on quantitative traits is much more common, very few signals have been detected because of their polygenic nature. We searched for positive selection signals underlying coronary artery disease (CAD) in worldwide populations, using novel approaches to quantify relationships between polygenic selection signals and CAD genetic risk. We identified new candidate adaptive loci that appear to have been directly modified by disease pressures given their significant associations with CAD genetic risk. These candidates were all uniquely and consistently associated with many different male and female reproductive traits suggesting selection may have also targeted these because of their direct effects on fitness. We found that CAD loci are significantly enriched for lifetime reproductive success relative to the rest of the human genome, with evidence that the relationship between CAD and lifetime reproductive success is antagonistic. This supports the presence of antagonistic-pleiotropic tradeoffs on CAD loci and provides a novel explanation for the maintenance and high prevalence of CAD in modern humans. Lastly, we found that positive selection more often targeted CAD gene regulatory variants using HapMap3 lymphoblastoid cell lines, which further highlights the unique biological significance of candidate adaptive loci underlying CAD. Our study provides a novel approach for detecting selection on polygenic traits and evidence that modern human genomes have evolved in response to CAD-induced selection pressures and other early-life traits sharing pleiotropic links with CAD.


Subject(s)
Coronary Artery Disease/genetics , Genetic Loci , Genetic Pleiotropy , Selection, Genetic , Genetic Fitness , HapMap Project , Humans , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...