Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 7691, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36509779

ABSTRACT

Mechanical strain is a powerful tuning knob for excitons, Coulomb-bound electron-hole complexes dominating optical properties of two-dimensional semiconductors. While the strain response of bright free excitons is broadly understood, the behaviour of dark free excitons (long-lived excitations that generally do not couple to light due to spin and momentum conservation) or localized excitons related to defects remains mostly unexplored. Here, we study the strain behaviour of these fragile many-body states on pristine suspended WSe2 kept at cryogenic temperatures. We find that under the application of strain, dark and localized excitons in monolayer WSe2-a prototypical 2D semiconductor-are brought into energetic resonance, forming a new hybrid state that inherits the properties of the constituent species. The characteristics of the hybridized state, including an order-of-magnitude enhanced light/matter coupling, avoided-crossing energy shifts, and strain tunability of many-body interactions, are all supported by first-principles calculations. The hybridized excitons reported here may play a critical role in the operation of single quantum emitters based on WSe2. Furthermore, the techniques we developed may be used to fingerprint unidentified excitonic states.

2.
Nat Commun ; 13(1): 6601, 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36329011

ABSTRACT

The application of an electric field through two-dimensional materials (2DMs) modifies their properties. For example, a bandgap opens in semimetallic bilayer graphene while the bandgap shrinks in few-layer 2D semiconductors. The maximum electric field strength achievable in conventional devices is limited to ≤0.3 V/nm by the dielectric breakdown of gate dielectrics. Here, we overcome this limit by suspending a 2DM between two volumes of ionic liquid (IL) with independently controlled potentials. The potential difference between the ILs falls across an ultrathin layer consisting of the 2DM and the electrical double layers above and below it, producing an intense electric field larger than 4 V/nm. This field is strong enough to close the bandgap of few-layer WSe2, thereby driving a semiconductor-to-metal transition. The ability to apply fields an order of magnitude higher than what is possible in dielectric-gated devices grants access to previously-inaccessible phenomena occurring in intense electric fields.

3.
Nano Lett ; 20(4): 2544-2550, 2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32191482

ABSTRACT

We investigate the excitonic peak associated with defects and disorder in low-temperature photoluminescence of monolayer transition metal dichalcogenides (TMDCs). To uncover the intrinsic origin of defect-related (D) excitons, we study their dependence on gate voltage, excitation power, and temperature in a prototypical TMDC monolayer MoS2. Our results suggest that D excitons are neutral excitons bound to ionized donor levels, likely related to sulfur vacancies, with a density of 7 × 1011 cm-2. To study the extrinsic contribution to D excitons, we controllably deposit oxygen molecules in situ onto the surface of MoS2 kept at cryogenic temperature. We find that, in addition to trivial p-doping of 3 × 1012 cm-2, oxygen affects the D excitons, likely by functionalizing the defect sites. Combined, our results uncover the origin of D excitons, suggest an approach to track the functionalization of TMDCs, to benchmark device quality, and pave the way toward exciton engineering in hybrid organic-inorganic TMDC devices.

4.
ACS Appl Mater Interfaces ; 8(25): 16451-6, 2016 Jun 29.
Article in English | MEDLINE | ID: mdl-27268402

ABSTRACT

Organic nanoscale science and technology relies on the control of phenomena occurring at the molecular level. This is of particular importance for the self-assembly of molecular monolayers (SAM) that can be used in various applications ranging from organic electronics to bioelectronic applications. However, the understanding of the elementary nanoscopic processes in molecular film growth is still in its infancy. Here, we developed a novel in situ and extremely sensitive detection method for the analysis of the electronic properties of molecular layer during molecular layer deposition. This low-frequency sensor (1 kHz) is employed to analyze the standard vapor deposition process of SAMs of molecules and, subsequently, it is used to optimize the growth process itself. By combining this method with an ex situ determination of the effective thickness of the resulting layers via ellipsometry, we observe a large difference of the permittivity (1 kHz) of the examined aminosilanes in the liquid state (εliquid = 5.5-8.8) and in SAMs (εSAM = 22-52, electric field in the plane of the layer). We ascribe this difference to either the different orientation and order of the molecules, the different density of molecules, or a combination of both effects. Our novel in situ analyses not only allows monitoring and optimizing the deposition of organic layers but also demonstrates the high potential of organic SAMs as organic high-k layers in electronic devices.

5.
Biointerphases ; 11(2): 021003, 2016 Jun 06.
Article in English | MEDLINE | ID: mdl-27052005

ABSTRACT

Supported lipid bilayers are widely used as cell membrane models and sensor platforms, but the usage on gold surface needs additional surface modification or optimized experimental conditions. In this work, the authors show lipid bilayer formation on plasma activated gold surfaces in physiological conditions without any other modification if at least 30% positively charged lipids are present. Details of bilayer formation from small unilamellar vesicles were monitored using quartz crystal microbalance with dissipation in both basic and acidic environment. The authors also confirmed that this positively charged bilayer system can sustain primary cortical neuron growth and lipid transfer. This method will provide simple means to construct biomimetic interface on gold electrodes.


Subject(s)
Gold , Lipid Bilayers , Neurons/physiology , Animals , Cell Culture Techniques , Cells, Cultured , Lipid Metabolism , Rats
6.
J Phys Chem B ; 119(19): 5988-94, 2015 May 14.
Article in English | MEDLINE | ID: mdl-25905436

ABSTRACT

A streaming current/potential method is optimized and used for the analysis of the variation of the surface potential upon chemical modifications of a complex interface consisting of different organic molecules and gold nanoparticles (AuNPs). The surfaces of Si/SiO2 substrates modified with 3-aminopropyltriethoxysilane (APTES), AuNPs, and 11-amino-1-undecanethiol (aminothiols) are analyzed via pH and time dependent ζ potential measurements that reveal the stability and modification of the surface and identify crucial parameters for each individual preparation step. For instance, surface activation and especially molecular adsorbate layers tend not to be stable in time, whereas the substrate and the AuNPs provide a stable surface potential as long as impurities are avoided. It is shown that the streaming potential/current technique represents an ideal tool to analyze and monitor the complex surfaces and their modification.


Subject(s)
Gold Compounds/chemistry , Metal Nanoparticles/chemistry , Alkanes/chemistry , Citric Acid/chemistry , Hydrogen-Ion Concentration , Microscopy, Electron, Scanning , Polypropylenes/chemistry , Propylamines , Silanes/chemistry , Silicon/chemistry , Silicon Dioxide/chemistry , Sulfhydryl Compounds/chemistry , Surface Properties , Time Factors , Water/chemistry
7.
Small ; 8(21): 3357-67, 2012 Nov 05.
Article in English | MEDLINE | ID: mdl-22826008

ABSTRACT

Guiding of neuronal cells on surfaces is required for the investigation of fundamental aspects of neurobiology, for tissue engineering, and for numerous bioelectronic applications. A modular method to establish nanostructured chemical templates for local deposition of gold nanoparticles is presented. A process comprising nanoimprint lithography, silanization, lift-off, and gold nanoparticle immobilization is used to fabricate the particle patterns. The chemical composition of the surface can be modified by in situ adsorption of cell-binding ligands to locally addressed particles. The versatility of this approach is demonstrated by inverting the binding affinity between rat cortical neurons and nanopatterned surfaces via wet-chemical means and thereby reversing the pattern of guided neurons.


Subject(s)
Gold/pharmacology , Metal Nanoparticles/chemistry , Nanotechnology/methods , Neurites/metabolism , Animals , Cell Adhesion/drug effects , Cells, Cultured , Metal Nanoparticles/ultrastructure , Molecular Imprinting , Neurites/ultrastructure , Polyethylene Glycols/pharmacology , Rats , Rats, Wistar , Surface Properties , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...