Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale Horiz ; 9(5): 863-872, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38533738

ABSTRACT

The behavior of polyelectrolytes in confined spaces has direct relevance to the protein mediated ion transport in living organisms. In this paper, we govern lithium chloride transport by the interface provided by polyelectrolytes, polycation, poly(diallyldimethylammonium chloride) (PDDA) and, polyanion, double stranded deoxyribonucleic acid (dsDNA), in confined graphene oxide (GO) membranes. Polyelectrolyte-GO interfaces demonstrate neuromorphic functions that were successfully applied with nanochannel ion interactions contributed, resulting in ion memory effects. Excitatory and inhibitory post-synaptic currents were tuned continuously as the number of pulses applied increased accordingly, increasing decay times. Furthermore, we demonstrated the short-term memory of a trained vs untrained device in computation. On account of its simple and safe production along with its robustness and stability, we anticipate our device to be a low dimensional building block for arrays to embed artificial neural networks in hardware for neuromorphic computing. Additionally, incorporating such devices with sensing and actuating parts for a complete feedback loop produces robotics with its own ability to learn by modifying actuation based on sensing data.


Subject(s)
DNA , Graphite , Polyethylenes , Quaternary Ammonium Compounds , Graphite/chemistry , DNA/chemistry , Quaternary Ammonium Compounds/chemistry , Polyethylenes/chemistry , Neural Networks, Computer , Membranes, Artificial , Oxides/chemistry
2.
Adv Mater ; : e2311949, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38306214

ABSTRACT

Generation and control of topological spin textures constitutes one of the most exciting challenges of modern spintronics given their potential applications in information storage technologies. Of particular interest are magnetic insulators, which due to low damping, absence of Joule heating and reduced dissipation can provide energy-efficient spin-textures platform. Here, it is demonstrated that the interplay between sample thickness, external magnetic fields, and optical excitations can generate a prolific paramount of spin textures, and their coexistence in insulating CrBr3 van der Waals (vdW) ferromagnets. Using high-resolution magnetic force microscopy and large-scale micromagnetic simulation methods, the existence of a large region in T-B phase diagram is demonstrated where different stripe domains, skyrmion crystals, and magnetic domains exist and can be intrinsically selected or transformed to each-other via a phase-switch mechanism. Lorentz transmission electron microscopy unveils the mixed chirality of the magnetic textures that are of Bloch-type at given conditions but can be further manipulated into Néel-type or hybrid-type via thickness-engineering. The topological phase transformation between the different magnetic objects can be further inspected by standard photoluminescence optical probes resolved by circular polarization indicative of an existence of exciton-skyrmion coupling mechanism. The findings identify vdW magnetic insulators as a promising framework of materials for the manipulation and generation of highly ordered skyrmion lattices relevant for device integration at the atomic level.

3.
Nano Lett ; 22(14): 5715-5722, 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35820103

ABSTRACT

Made of a thin non-superconducting metal (N) sandwiched by two superconductors (S), SNS Josephson junctions enable novel quantum functionalities by mixing up the intrinsic electronic properties of N with the superconducting correlations induced from S by proximity. Electronic properties of these devices are governed by Andreev quasiparticles (Andreev, A. Sov. Phys. JETP 1965, 20, 1490) which are absent in conventional SIS junctions whose insulating barrier (I) between the two S electrodes owns no electronic states. Here we focus on the Josephson vortex (JV) motion inside Nb-Cu-Nb proximity junctions subject to electric currents and magnetic fields. The results of local (magnetic force microscopy) and global (transport) experiments provided simultaneously are compared with our numerical model, revealing the existence of several distinct dynamic regimes of the JV motion. One of them, identified as a fast hysteretic entry/escape below the critical value of Josephson current, is analyzed and suggested for low-dissipative logic and memory elements.

4.
J Phys Chem Lett ; 12(51): 12196-12201, 2021 Dec 30.
Article in English | MEDLINE | ID: mdl-34918928

ABSTRACT

Lateral Josephson junctions (LJJ) made of two superconducting Nb electrodes coupled by Cu-film are applied to quantify the stray magnetic field of Co-coated cantilevers used in magnetic force microscopy (MFM). The interaction of the magnetic cantilever with LJJ is reflected in the electronic response of LJJ as well as in the phase shift of cantilever oscillations, simultaneously measured. The phenomenon is theorized and used to establish the spatial map of the stray field. Based on our findings, we suggest integrating LJJs directly on the tips of cantilevers and using them as nanosensors of local magnetic fields in scanning probe microscopes. Such probes are less invasive than conventional magnetic MFM cantilevers and simpler to realize than SQUID-on-tip sensors.

6.
Nat Commun ; 10(1): 4009, 2019 Sep 05.
Article in English | MEDLINE | ID: mdl-31488813

ABSTRACT

Josephson vortices play an essential role in superconducting quantum electronics devices. Often seen as purely conceptual topological objects, 2π-phase singularities, their observation and manipulation are challenging. Here we show that in Superconductor-Normal metal-Superconductor lateral junctions Josephson vortices have a peculiar magnetic fingerprint that we reveal in Magnetic Force Microscopy (MFM) experiments. Based on this discovery, we demonstrate the possibility of the Josephson vortex generation and manipulation by the magnetic tip of a MFM, thus paving a way for the remote inspection and control of individual nano-components of superconducting quantum circuits.

7.
Sci Adv ; 4(7): eaat1061, 2018 07.
Article in English | MEDLINE | ID: mdl-30027117

ABSTRACT

The interplay between superconductivity and magnetism is one of the oldest enigmas in physics. Usually, the strong exchange field of ferromagnet suppresses singlet superconductivity via the paramagnetic effect. In EuFe2(As0.79P0.21)2, a material that becomes not only superconducting at 24.2 K but also ferromagnetic below 19 K, the coexistence of the two antagonistic phenomena becomes possible because of the unusually weak exchange field produced by the Eu subsystem. We demonstrate experimentally and theoretically that when the ferromagnetism adds to superconductivity, the Meissner state becomes spontaneously inhomogeneous, characterized by a nanometer-scale striped domain structure. At yet lower temperature and without any externally applied magnetic field, the system locally generates quantum vortex-antivortex pairs and undergoes a phase transition into a domain vortex-antivortex state characterized by much larger domains and peculiar Turing-like patterns. We develop a quantitative theory of this phenomenon and put forth a new way to realize superconducting superlattices and control the vortex motion in ferromagnetic superconductors by tuning magnetic domains-unprecedented opportunity to consider for advanced superconducting hybrids.

SELECTION OF CITATIONS
SEARCH DETAIL
...