Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Respir Cell Mol Biol ; 46(1): 71-9, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21836154

ABSTRACT

The expression of acidic mammalian chitinase (AMCase) is associated with Th2-driven respiratory disorders. To investigate the potentially pathological role of AMCase in allergic airway disease (AAD), we sensitized and challenged mice with ovalbumin or a combination of house dust mite (HDM) plus cockroach allergen. These mice were treated or not treated with small molecule inhibitors of AMCase, which significantly reduced allergen-induced chitinolytic activity in the airways, but exerted no apparent effect on pulmonary inflammation per se. Transgenic and AMCase-deficient mice were also submitted to protocols of allergen sensitization and challenge, yet we found little or no difference in the pattern of AAD between mutant mice and wild-type (WT) control mice. In a separate model, where mice were challenged only with intratracheal instillations of HDM without adjuvant, total bronchoalveolar lavage (BAL) cellularity, inflammatory infiltrates in lung tissues, and lung mechanics remained comparable between AMCase-deficient mice and WT control mice. However BAL neutrophil and lymphocyte counts were significantly increased in AMCase-deficient mice, whereas concentrations in BAL of IL-13 were significantly decreased compared with WT control mice. These results indicate that, although exposure to allergen stimulates the expression of AMCase and increased chitinolytic activity in murine airways, the overexpression or inhibition of AMCase exerts only a subtle impact on AAD. Conversely, the increased numbers of neutrophils and lymphocytes in BAL and the decreased concentrations of IL-13 in AMCase-deficient mice challenged intratracheally with HDM indicate that AMCase contributes to the Th1/Th2 balance in the lungs. This finding may be of particular relevance to patients with asthma and increased airway neutrophilia.


Subject(s)
Asthma/enzymology , Chitinases/antagonists & inhibitors , Hypersensitivity/enzymology , Allergens/immunology , Animals , Asthma/genetics , Asthma/immunology , Bronchoalveolar Lavage Fluid/immunology , Chitinases/deficiency , Chitinases/genetics , Chitinases/immunology , Female , Humans , Hypersensitivity/genetics , Hypersensitivity/immunology , Inflammation/enzymology , Inflammation/genetics , Inflammation/immunology , Interleukin-13/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Neutrophils/immunology , Th1 Cells/immunology , Th2 Cells/immunology
2.
J Immunol ; 185(7): 4213-22, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20817881

ABSTRACT

The receptor for advanced glycation end products (RAGE) is a multiligand transmembrane receptor implicated in a number of diseases including autoimmune diseases. To further understand the pathogenic mechanism of RAGE in these diseases, we searched for additional ligands. We discovered that C3a bound to RAGE with an EC(50) of 1.9 nM in an ELISA, and the binding was increased both in magnitude (by >2-fold) and in affinity (EC(50) 70 pM) in the presence of human stimulatory unmethylated cytosine-guanine-rich DNA A (hCpGAs). Surface plasmon resonance and fluorescence anisotropy analyses demonstrated that hCpGAs could bind directly to RAGE and C3a and form a ternary complex. In human PBMCs, C3a increased IFN-α production in response to low levels of hCpGAs, and this synergy was blocked by soluble RAGE or by an Ab directed against RAGE. IFN-α production was reduced in response to mouse CpGAs and C3a in RAGE(-/-) mouse bone marrow cells compared wild-type mice. Taken together, these data demonstrate that RAGE is a receptor for C3a and CpGA. Through direct interaction, C3a and CpGA synergize to increase IFN-α production in a RAGE-dependent manner and stimulate an innate immune response. These findings indicate a potential role of RAGE in autoimmune diseases that show accumulation of immunostimulatory DNA and C3a.


Subject(s)
Complement C3a/metabolism , DNA/metabolism , Interferon-gamma/metabolism , Oligonucleotides/metabolism , Receptor for Advanced Glycation End Products/metabolism , Animals , Complement C3a/immunology , DNA/immunology , Enzyme-Linked Immunosorbent Assay , Humans , Interferon-gamma/immunology , Mice , Mice, Knockout , Oligonucleotides/immunology , Protein Binding , Receptor for Advanced Glycation End Products/immunology , Surface Plasmon Resonance
3.
Biochemistry ; 44(28): 9563-73, 2005 Jul 19.
Article in English | MEDLINE | ID: mdl-16008341

ABSTRACT

Protein kinase C theta (PKCtheta), a member of the Ca(2+)-independent novel subfamily of PKCs, is required for T-cell receptor (TCR) signaling and IL2 production. PKCtheta-deficient mice have impaired Th2 responses in a murine ova-induced asthma model, while Th1 responses are normal. As an essential component of the TCR signaling complex, PKCtheta is a unique T-cell therapeutic target in the specific treatment of T-cell-mediated diseases. We report here the PKCtheta autophosphorylation characteristics and elucidation of the catalytic mechanism of the PKCtheta kinase domain using steady-state kinetics. Key phosphorylated residues of the active PKCtheta kinase domain expressed in Escherichia coli were characterized, and mutational analysis of the kinase domain was performed to establish the autophosphorylation and kinase activity relationships. Initial velocity, product inhibition, and dead-end inhibition studies provided assignments of the kinetic mechanism of PCKtheta(362)(-)(706) as ordered, wherein ATP binds kinase first and ADP is released last. Effects of solvent viscosity and ATPgammaS on PKCtheta catalysis demonstrated product release is partially rate limiting. Our studies provide important mechanistic insights into kinase activity and phosphorylation-mediated regulation of the novel PKC isoform, PKCtheta. These results should aid the design and discovery of PKCtheta antagonists as therapeutics for modulating T-cell-mediated immune and respiratory diseases.


Subject(s)
Catalytic Domain , Isoenzymes/chemistry , Isoenzymes/metabolism , Protein Kinase C/chemistry , Protein Kinase C/metabolism , Adenosine Diphosphate/chemistry , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Binding, Competitive , Catalysis , Catalytic Domain/genetics , Enzyme Activation , Isoenzymes/antagonists & inhibitors , Isoenzymes/genetics , Kinetics , Molecular Sequence Data , Mutagenesis, Site-Directed , Osmolar Concentration , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Phosphorylation , Protein Kinase C/antagonists & inhibitors , Protein Kinase C/genetics , Protein Kinase C-theta , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Serine/chemistry , Serine/genetics , Substrate Specificity , Threonine/chemistry , Threonine/genetics , Threonine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...