Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Chemosphere ; 242: 125249, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31896203

ABSTRACT

Machu Picchu is an archaeological Inca sanctuary from the 15th century, located 2430 m above the sea level in the Cusco Region, Peru. In 1983, it was declared World Heritage Site by UNESCO. The surroundings and soils from the entire archaeological site are carefully preserved together with its grass parks. Due to the importance of the archaeological city and its surroundings, the Decentralized Culture Directorate of Cusco-PAN Machu Picchu decided to carry out a careful monitoring study in order to determine the ecological status of the soils. In this work, elemental and molecular characterization of 17 soils collected along the entire park was performed by means of X-ray Diffraction (XRD) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) after acidic digestion assisted by microwave energy. Thanks to the combination of these analytical techniques, it was possible to obtain the mineral composition and metal concentrations of all soils from these 17 sampling points. Finally, different statistical treatments were carried out in order to confirm the ecological status of the different sampling points from Machu Picchu archaeological site concluding that soils are not impacted.


Subject(s)
Environmental Monitoring , Metals/analysis , Soil Pollutants/analysis , Cities , Metals, Heavy/analysis , Peru , Soil/chemistry , X-Ray Diffraction
2.
Environ Sci Pollut Res Int ; 24(31): 24333-24345, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28889400

ABSTRACT

In city playgrounds, there is a potential risk of harming children's health by contamination coming from anthropogenic activities. With the aim to determinate the sources and the risk of hazardous elements, soil samples were collected in 19 selected playgrounds of different urban and rural areas from the Rio Grande do Sul state (Brazil). The concentration of 23 metals and metalloids and lead isotopic ratios were determined by ICP-MS. The methodology proposed here, firstly, classified the parks according to the average metal content by means of the NWACs (Normalized-and-Weighted Average Concentrations) and assess the contamination risk determining the Contamination Factors (CFs). Finally, statistical tools (correlation analysis and principal component analysis) were used to identify the most important contamination sources. The statistical tools used, together with lead isotopic composition analysis of the samples, revealed that coal combustion is the main source of contamination in the area. Vegetation was identified as a barrier for the contamination coming from the city. Nonetheless, some of the soils present a possible toxicological risk for humans. In fact, Cr, Sb, and Pb concentrations were higher than the Residential Intervention Values (VIRs) defined by the Environmental Protection Agency of the State of São Paulo, also in Brazil.


Subject(s)
Environmental Exposure , Environmental Monitoring , Metalloids/analysis , Metals/analysis , Soil Pollutants/analysis , Brazil , Child , Humans , Isotopes/analysis , Lead/analysis , Parks, Recreational , Risk Assessment
3.
Chemosphere ; 169: 725-733, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27720476

ABSTRACT

Soils around coal mining are important reservoir of hazardous elements (HEs), nanominerals, and ultrafine compounds. This research reports and discusses the soil concentrations of HEs (As, Cd, Cr, Cu, Ni, Pb, and Zn) in coal residues of abandoned mines. To assess differences regarding environmental impact and risk assessment between coal abandoned mines from the Santa Catarina state, eighteen coal cleaning rejects with different mineralogical and chemical composition, from eight abandoned mines were collected. Nanominerals and ultra-fine minerals from mining-contaminated areas were analyzed by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and high-resolution transmission electron microscope (HR-TEM), providing new information on the mineralogy and nano-mineralogy of these coal residues. The total contents of 57 elements (HEs, alkali metals, and rare earth elements) were analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The calculation of NWACs (Normalized Average Weighted Concentration), together with the chemometric analysis by Principal component analysis (PCA) confirmed the variability of the samples regarding their city and their mine of origin. Moreover, the results confirmed the existence of hotspots in mines near urban areas.


Subject(s)
Coal Ash/analysis , Coal/analysis , Environmental Monitoring/methods , Minerals/analysis , Mining , Risk Assessment/methods , Brazil , Hazardous Waste , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Nanoparticles/chemistry , Soil , Soil Pollutants/analysis , X-Ray Diffraction
4.
Sci Total Environ ; 544: 892-900, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26706762

ABSTRACT

Brazilian coal area (South Brazil) impacted the environment by means of a large number of coal waste piles emplaced over the old mine sites and the adjacent areas of the Criciúma, Urussanga, and Siderópolis cities. The area studied here was abandoned and after almost 30 years (smokeless visual) some companies use the actual minerals derived from burning coal cleaning rejects (BCCRs) complied in the mentioned area for industry tiles or refractory bricks. Mineralogical and geochemical similarities between the BCCRs and non-anthropogenic geological environments are outlined here. Although no visible flames were observed, this study revealed that auto-combustion existed in the studied area for many years. The presence of amorphous phases, mullite, hematite and other Fe-minerals formed by high temperature was found. There is also pyrite, Fe-sulphates (eg. jarosite) and unburnt coal present, which are useful for comparison purposes. Bad disposal of coal-dump wastes represents significant environmental concerns due to their potential influence on atmosphere, river sediments, soils and as well as on the surface and groundwater in the surroundings of these areas. The present study using advanced analytical techniques were performed to provide an improved understanding of the complex processes related with sulphide-rich coal waste oxidation, spontaneous combustion and mineral formation. It is reporting huge numbers of rare minerals with alunite, montmorillonite, szomolnokite, halotrichite, coquimbite and copiapite at the BCCRs. The data showed the presence of abundant amorphous Si-Al-Fe-Ti as (oxy-)hydroxides and Fe-hydro/oxides with goethite and hematite with various degrees of crystallinity, containing hazardous elements, such as Cu, Cr, Hf, Hg, Mo, Ni, Se, Pb, Th, U, Zr, and others. By Principal Component Analysis (PCA), the mineralogical composition was related with the range of elemental concentration of each sample. Most of the nano-minerals and ultra-fine particles found in the burned coal-dump wastes are the same as those commonly associated with coal cleaning rejects, in which oxidation of sulphides plays an important role to environment and human health.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Incineration , Minerals/analysis , Nanostructures/analysis , Coal , Environmental Monitoring/methods , Fires , Industrial Waste
5.
Sci Total Environ ; 508: 374-82, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25497677

ABSTRACT

Hazard element contamination coming from coal power plants is something obvious, but when this contamination is accompanied by other contamination sources, such as, urban, coal mining and farming activities the study gets complicated. This is the case of an area comprised in the southern part of Santa Catarina state (Brazil) with the largest private power plant generator. After the elemental analysis of 41 agricultural soils collected in an extensive area around the thermoelectric (from 0 to 47 km), the high presence of As, Co, Cr, Cu, Fe, Mn, Mo, Pb, Sb, Sn, Tl, V and Zn was found in some specific areas around the power plant. Nevertheless, as the NWAC (Normalized-and-Weighted Average Concentration) confirmed, only soils from one site were classified as of very high concern due to the presence of potential toxic elements. This site was located within the sedimentation basin of the power plant. The spatial distribution obtained by kriging in combination with the analysis of the data by Principal Component Analysis (PCA) revealed three important hotspots in the area according to soil uses and geographic localization: the thermoelectric, its area of influence due to volatile compound deposition, and the area comprised between two urban areas. Farming practice turn out to be an important factor too for the quantity of hazard element stored in soils.


Subject(s)
Hazardous Substances/analysis , Power Plants , Soil Pollutants/analysis , Soil/chemistry , Brazil , Coal , Environmental Monitoring
SELECTION OF CITATIONS
SEARCH DETAIL