Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 62(29): 11682-11689, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37436813

ABSTRACT

Single crystals of four new cesium copper silicates were grown from CsCl/CsF flux. [CsCs4Cl][Cu2Si8O20] is a salt-inclusion compound that crystallizes in space group P4/m with lattice parameters a = 12.2768(3) Å and c = 8.6470(2) Å; Cs6Cu2Si9O23 crystallizes in space group P21/n with lattice parameters a = 15.0763(9) Å, b = 6.9654(4) Å, c = 26.9511(17) Å, and ß = 99.240(2)°; Cs8Cu3Si14O35 crystallizes in space group C2/c with a = 39.2236(13) Å, b = 6.9658(2) Å, c = 14.9115(5) Å, and ß = 97.1950(10)°; and Cs2CuSi3O8 is a member of the stuffed tridymite family and crystallizes in a monoclinic distortion of the CsAlSiO4 structure type with space group C2/m and a = 12.8587(3) Å, b = 5.38510(10) Å, c = 9.0440(2) Å, and ß = 133.2580(10)°. All four compounds contain CuO4-flattened tetrahedra. The degree of flattening can be correlated with the UV-vis spectra. Cs6Cu2Si9O23 exhibits spin dimer magnetism that can be attributed to super-super-exchange between two Cu(II) ions connected by a silicate tetrahedron. The other three compounds all show paramagnetic behavior down to 2 K.

2.
Inorg Chem ; 60(21): 16652-16657, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34664949

ABSTRACT

The synthesis and characterization of the double perovskite SrLaLiOsO6 is presented. It is isostructural (P21/n) and isoelectronic (5d2) with SrLaMgReO6, which has been reported previously. The cell volumes are the same to within 1.4%: i.e., these perovskites are doppelgängers. In a previous study SrLaMgReO6 showed no sign of spin order to 2 K. New data at lower temperatures disclose a maximum in the dc susceptibility near 1.5 K. As the Curie-Weiss (C-W) temperature (Θ) for this material is -161 K, an enormous frustration index, f ≈ 100, is implied (f = |Θ|/Tord). On the other hand, SrLaLiOsO6 does not follow the C-W law over the investigated susceptibility range, 2-300 K. Fitting with an added temperature independent term (TIP) gives µeff = 1.96 µB, Θ = -102 K, and TIP = 1.01 × 10-3 emu/mol. A clear zero-field-cooled (ZFC), field-cooled (FC) divergence in the dc data occurs at ∼10 K, suggesting a much reduced frustration index, f ≈ 10, relative to SrLaMgReO6. The real part of the ac susceptibility data, χ'max, shows a frequency shift that is consistent with a spin glass ground state according to the Mydosh criterion. Heat capacity data for SrLaLiOsO6 show no sign of a λ peak at 10 K and a linear dependence on temperature below 10 K, also supporting a spin glass ground state. A spin frozen ground state for SrLaMgReO6 could not be established from χ' data due to a much weaker signal. Nonetheless, the 10-fold difference in f between these doppelgänger materials is remarkable. It is possible that the enhanced covalency with the oxide ligands for Os6+ relative to Re5+ plays a major role here. Finally, a comparison with isostructural La2LiReO6 (with a much smaller f ≈ 4) is made and a correlation between the frustration level and the sense of the local distortion of the Re(Os)-O octahedron is pointed out.

3.
ACS Omega ; 6(8): 6017-6029, 2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33681639

ABSTRACT

The series BaIn1-x Fe x O2.5+δ, x = 0.25, 0.50, and 0.75, has been prepared under air-fired and argon-fired conditions and studied using X-ray diffraction, d.c. and a.c. susceptibility, Mössbauer spectroscopy, neutron diffraction, X-ray near edge absorption spectroscopy (XANES), and X-ray pair distribution (PDF) methods. While Ba2In2O5 (BaInO2.5) crystallizes in an ordered brownmillerite structure, Ibm2, and Ba2Fe2O5 (BaFeO2.5) crystallizes in a complex monoclinic structure, P21/c, showing seven Fe3+ sites with tetrahedral, square planar, and octahedral environments, all phases studied here crystallize in the cubic perovskite structure, Pm3̅m, with long-range disorder on the small cation and oxygen sites. 57Fe Mössbauer studies indicate a mixed valency, Fe4+/Fe3+, for both the air-fired and argon-fired samples. The increased Fe3+ content for the argon-fired samples is reflected in increased cubic cell constants and in the increased Mössbauer fraction. It appears that the Pm3̅m phases are only metastable when fired in argon. From a slightly modified percolation theory for a primitive cubic lattice (taking into account the presence of random O atom vacancies), long-range spin order is permitted for the x = 0.50 and 0.75 phases. Instead, the d.c. susceptibility shows only zero-field-cooled (ZFC) and field-cooled (FC) divergences at ∼6 K [5 K] for x = 0.50 and at ∼22 K [21 K] for x = 0.75, with values for the argon-fired samples in [ ]. Neutron diffraction data for the air-fired samples confirm the absence of long-range magnetic order at any studied temperature. For the air-fired x = 0.50, a.c. susceptibility data show a frequency-dependent χ'(max) and spin glass behavior, while for x = 0.75, χ'(max) is invariant with frequency, ruling out either a spin glass or a superparamagnetic ground state. These behaviors are discussed in terms of competing Fe3+-Fe3+ antiferromagnetic exchange and ferromagnetic Fe3+-Fe4+ exchange. The PDF and 57Fe Mössbauer data indicate a local structure at short interatomic distances, which deviates strongly from the average Pm3̅m model. Fe Mössbauer, PDF, and XANES data show a systematic dependence on x and indicate that the Fe3+ sites are largely fourfold-coordinated and Fe4+ sites are fivefold- or sixfold-coordinated.

4.
Inorg Chem ; 58(7): 4300-4309, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30864435

ABSTRACT

SrLaMnO4 is a layered antiferromagnetic (AF) oxide with the tetragonal ( I4/ mmm) n = 1 Ruddlesden-Popper phase structure (also known as the K2NiF4 structure) with TN = 128 K. Remarkably, substitution of Sr2+ by Ba2+, forming the solid solution Ba1- xSr xLaMnO4, results in the destruction of long-range magnetic order and of the ordered moment on Mn3+ for x > 0.35, although the effective paramagnetic moment remains unchanged, an unprecedented behavior for this class of magnetic materials. Four members, x = 0.0, 0.25, 0.35, and 1.0, have been studied using XYZ neutron polarization analysis which permits isolation of the magnetic, nuclear and nuclear spin components of the scattering and the measurement of the absolute value of the magnetic cross section. Data analysis is done using model independent reverse Monte Carlo methods (SPINVERT). The results for x = 0.0 (SrLaMnO4), T > TN(128 K), show an asymmetric diffuse peak which evolves into resolution limited Bragg peaks below T N and a fully ordered AF ground state with a Mn3+ moment of 3.06 µB. For x = 0.25 the magnetic scattering below T N displays a remarkable phase separation-Bragg reflections coexisting with diffuse scattering. The ordered Mn3+ moment is 1.1 µB, much reduced from that obtained via unpolarized neutrons. There are no Bragg peaks for x = 0.35 at any measured temperature ( T > 3 K) but there is highly structured diffuse scattering indicating strong short-range order reminiscent of x = 0 and 0.25 above their respective transition temperatures. For x = 1.00 (BaLaMnO4) the diffuse scattering roughly follows a paramagnetic form-factor indicating no short or long-range magnetic correlations. It is argued that the observed phenomena are due to a competition between AF and ferromagnetic (F) superexchange interactions for the 180° Mn3+-O-Mn3+ geometry within the ab plane and that the changes in the local geometry of the Mn-O octahedron leads to reduction of the AF interaction with a likely enhancement of the F interaction with increasing Ba content, ultimately giving rise to a glassy ground state. Analysis of the diffuse magnetic components show clear 2D AF spin correlations above TN for x = 0.00, 0.25, and 0.35 with correlation lengths, ξ ∼ 14-7 Å and no spin correlations for x = 1.00.

5.
Inorg Chem ; 57(22): 14144-14151, 2018 Nov 19.
Article in English | MEDLINE | ID: mdl-30394733

ABSTRACT

Transition metal compounds with complex crystal structures tend to demonstrate interesting magnetic coupling resulting in unusual magnetic properties. In this work, the structural and magnetic characterization of a single crystal of the Ni-Mn-Si based G-phase compound, Mn6Ni16Si7, grown by the Czochralski method, is reported. In this structure, isolated octahedral Mn6 clusters form an fcc lattice. As each octahedron consists of eight edge-sharing equilateral triangles, the possibility for geometric frustration exists. Magnetization and specific heat measurements showed two magnetic phase transitions at 197 and 50 K, respectively. At 100 K neutron diffraction on powder samples shows a magnetic structure with k = (001) in which only four of the six Mn spins per cluster order along ⟨100⟩ directions giving a two-dimensional magnetic structure consistent with intracluster frustration. Below the 50 K phase transition, the Mn spin-cants away from ⟨100⟩ directions, and a weak moment develops on the two remaining Mn octahedral sites.

6.
Dalton Trans ; 46(4): 1145-1152, 2017 Jan 24.
Article in English | MEDLINE | ID: mdl-28054073

ABSTRACT

Neutron pair distribution function data are used to investigate the local structures of two oxygen deficient perovskites with simple cubic crystal structures. La0.5Ba0.5MnO2.5 is found to have alternating layers of MnO6 octahedra and MnO4 tetrahedra, making it similar to other members of the La1-xBaxMnO2.5 series with smaller x values which have brownmillerite crystal structures. Our fitting results suggest that La0.5Ba0.5MnO2.5 is not locally similar to any one brownmillerite structure type but instead has a variety of intra-layer and inter-layer relationships. We propose that this could be due to short range segregation of the much differently sized La3+ and Ba2+ cations, which creates significantly different inter-layer distances. BaY0.25Fe0.75O2.5 is found not to have a brownmillerite-type local structure but rather seems to consist of structural units which are similar to Ba3YFe2O7.5, an earlier member of the BanYFen-1O2.5n series. The PDF analysis shows that there are never neighboring Y atoms and that the O vacancies lie exclusively between Fe atoms, such that Y is always octahedrally coordinated. The PDF also suggests that there are more tetrahedral Fe than expected, which could be due to the presence of terminal O atoms in Fe centered dimeric units, similar to what is found in Ba3YFe2O7.5.

7.
Inorg Chem ; 55(24): 12897-12903, 2016 Dec 19.
Article in English | MEDLINE | ID: mdl-27989196

ABSTRACT

The crystal structure of KRuO4 is refined at both 280 and 3.5 K from neutron powder data, and magnetic properties are reported for the first time. The scheelite structure, I41/a, is confirmed at both temperatures. Atomic positions of greater accuracy than the original 1954 X-ray study are reported. The rare Ru7+ ion resides in a site of distorted tetrahedral symmetry with nominal electronic configuration 4d1(e1). Curie-Weiss parameters are near free ion values for the effective moment and θ = -77 K, indicating dominant antiferromagnetic (AF) correlations. A broad susceptibility maximum occurs near 34 K, but long-range AF order sets in only below 22.4 K as determined by magnetization and heat capacity data. The entropy loss below 50 K is only 44% of the expected R ln 2, indicating the presence of short-range spin correlations over a wide temperature range. The Ru sublattice consists of centered, corner-sharing tetrahedra which can lead to geometric frustration if both the nearest-neighbor, J1, and the next-nearest-neighbor, J2, exchange constants are AF and of similar magnitude. A spin dimer analysis finds J1/J2 ≈ 25, indicating weak frustration, and a (dz2)1 ground state. A single, weak magnetic reflection was indexed as (110). The absence of the (002) magnetic reflection places the Ru moments parallel to the c axis. The Ru7+ moment is estimated to be 0.57(7) µB, reduced from an expected value near 1 µB. A recent computational study of isostructural, isoelectronic KOsO4 predicts a surprisingly large orbital moment due to spin-orbit coupling (SOC). However, the free ion SOC constant for Ru7+ is only ∼30% that of Os7+, so it is unclear that this effect can be implicated in the low ordered moment for KRuO4. The origin of the short-range spin correlations is also not understood.

8.
Inorg Chem ; 55(20): 10701-10713, 2016 Oct 17.
Article in English | MEDLINE | ID: mdl-27700052

ABSTRACT

Double perovskites (DP) of the general formula Ba2MReO6, where M = Mg, Zn, and Y2/3, all based on Re6+ (5d1, t2g1), were synthesized and studied using magnetization, heat capacity, muon spin relaxation, and neutron-scattering techniques. All are cubic, Fm3̅m, at ambient temperature to within the resolution of the X-ray and neutron diffraction data, although the muon data suggest the possibility of a local distortion for M = Mg. The M = Mg DP is a ferromagnet, Tc = 18 K, with a saturation moment ∼0.3 bohr magnetons at 3 K. There are two anomalies in the heat capacity: a sharp feature at 18 K and a broad maximum centered near 33 K. The total entropy loss below 45 K is 9.68 e.u., which approaches R ln 4 (11.52 e.u.) supporting a j = 3/2 ground state. The unit cell constants of Ba2MgReO6 and the isostructural, isoelectronic analogue, Ba2LiOsO6, differ by only 0.1%, yet the latter is an anti-ferromagnet. The M = Zn DP also appears to be a ferromagnet, Tc = 11 K, µsat(Re) = 0.1 µB. In this case the heat capacity shows a somewhat broad peak near 10 K and a broader maximum at ∼33 K, behavior that can be traced to a smaller particle size, ∼30 nm, for this sample. For both M = Mg and Zn, the low-temperature magnetic heat capacity follows a T3/2 behavior, consistent with a ferromagnetic spin wave. An attempt to attribute the broad 33 K heat capacity anomalies to a splitting of the j = 3/2 state by a crystal distortion is not supported by inelastic neutron scattering, which shows no transition at the expected energy of ∼7 meV nor any transition up to 100 meV. However, the results for the two ferromagnets are compared to the theory of Chen, Pereira, and Balents, and the computed heat capacity predicts the two maxima observed experimentally. The M = Y2/3 DP, with a significantly larger cell constant (3%) than the ferromagnets, shows predominantly anti-ferromagnetic correlations, and the ground state is complex with a spin frozen component Tg = 16 K from both direct current and alternating current susceptibility and µSR data but with a persistent dynamic component. The low-temperature heat capacity shows a T1 power law. The unit cell constant of B = Y2/3 is less than 1% larger than that of the ferromagnetic Os7+ (5d1) DP, Ba2NaOsO6.

9.
Dalton Trans ; 44(23): 10806-16, 2015 Jun 21.
Article in English | MEDLINE | ID: mdl-25740594

ABSTRACT

Four new double perovskites, SrLaMReO(6) (M = Mg, Mn, Co, Ni) in which Re(5+) (5d(2)) is present, were prepared via conventional solid state reactions and characterized by X-ray and neutron powder diffraction, XANES, SQUID magnetometry, and muon spin relaxation (µSR). Synchrotron X-ray and neutron diffraction experiments confirmed that all compounds crystallize in the monoclinic P2(1)/n structure type, which consists of alternately corner-shared octahedra of MO(6) and ReO(6). Rietveld refinement results indicated anti-site mixing of less than 7% on the M/Re sites. Bond valence sum calculations (BVS) suggest all M and Re ions are 2+ and 5+, respectively, and for the Mn-containing phase this is also supported by XANES measurements. All of the materials are paramagnetic at room-temperature and their Curie-Weiss temperatures are positive (except for Mg) indicating net ferromagnetic interactions. No evidence for long-range magnetic order is evident in the dc magnetic susceptibility and µSR measurements for SrLaMgReO(6) to 2 K. The Mn-phase shows long-range order at T(C) = 190 K and neutron diffraction revealed a ferromagnetic structure with a refined net moment of ∼3.7µ(B). Both Co- and Ni-containing phases exhibit spin glass behavior at T(G) = 23 and 30 K, respectively, which is supported by neutron diffraction and a.c. susceptibility data. The structure and physical properties of these four new rhenium based ordered double perovskites are compared to the closely related "pillared perovskites", La(5)Re(3)MO(16), the isoelectronic Os(6+) (5d(2)) double perovskite Sr(2)CoOsO(6), and the Re(6+) (5d(1)) double perovskites, Sr(2)MReO(6), (M = Mg, Ca, Mn, Co, Ni).

10.
Inorg Chem ; 53(2): 1122-7, 2014 Jan 21.
Article in English | MEDLINE | ID: mdl-24405325

ABSTRACT

The novel iron-based compound, BaYFeO4, crystallizes in the Pnma space group with two distinct Fe(3+) sites, that are alternately corner-shared [FeO5](7-) square pyramids and [FeO6](9-) octahedra, forming into [Fe4O18](24-) rings, which propagate as columns along the b-axis. A recent report shows two discernible antiferromagnetic (AFM) transitions at 36 and 48 K in the susceptibility, yet heat capacity measurements reveal no magnetic phase transitions at these temperatures. An upturn in the magnetic susceptibility measurements up to 400 K suggests the presence of short-range magnetic behavior at higher temperatures. In this Article, variable-temperature neutron powder diffraction and high-temperature magnetic susceptibility measurements were performed to clarify the magnetic behavior. Neutron powder diffraction confirmed that the two magnetic transitions observed at 36 and 48 K are due to long-range magnetic order. Below 48 K, the magnetic structure was determined as a spin-density wave (SDW) with a propagation vector, k = (0, 0, (1)/3), and the moments along the b-axis, whereas the structure becomes an incommensurate cycloid [k = (0, 0, ∼0.35)] below 36 K with the moments within the bc-plane. However, for both cases the ordered moments on Fe(3+) are only of the order ∼3.0 µB, smaller than the expected values near 4.5 µB, indicating that significant components of the Fe moments remain paramagnetic to the lowest temperature studied, 6 K. Moreover, new high-temperature magnetic susceptibility measurements revealed a peak maximum at ∼550 K indicative of short-range spin correlations. It is postulated that most of the magnetic entropy is thus removed at high temperatures which could explain the absence of heat capacity anomalies at the long-range ordering temperatures. Published spin dimer calculations, which appear to suggest a k = (0, 0, 0) magnetic structure, and allow for neither low dimensionality nor geometric frustration, are inadequate to explain the observed complex magnetic structure.

11.
Inorg Chem ; 51(21): 11493-9, 2012 Nov 05.
Article in English | MEDLINE | ID: mdl-23066706

ABSTRACT

The novel osmium-based oxide Li(3)Mg(2)OsO(6) was synthesized in polycrystalline form by reducing Li(5)OsO(6) by osmium metal and osmium(IV) oxide in the presence of stoichiometric amounts of magnesium oxide. The crystal structure was refined using powder X-ray diffraction data in the orthorhombic Fddd space group with a = 5.88982(5) Å, b = 8.46873(6) Å, and c = 17.6825(2) Å. This compound is isostructural and isoelectronic with the ruthenium-based system Li(3)Mg(2)RuO(6). The magnetic ion sublattice Os(5+) (S = 3/2) consists of chains of interconnected corner- and edge-shared triangles, which brings about the potential for geometric magnetic frustration. The Curie-Weiss law holds over the range 80-300 K with C = 1.42(3) emu·K/mol [µ(eff) = 3.37(2) µ(B)] and θ(C) = -105.8(2) K. Below 80 K, there are three anomalies at 75, 30, and 8 K. Those at 75 and 30 K are suggestive of short-range antiferromagnetic correlations, while that at 8 K is a somewhat sharper maximum showing a zero-field-cooled/field-cooled divergence suggestive of perhaps spin freezing. The absence of magnetic Bragg peaks at 3.9 K in the neutron diffraction pattern supports this characterization, as does the absence of a sharp peak in the heat capacity, which instead shows only a very broad maximum at ∼12 K. A frustration index of f = 106/8 = 13 indicates a high degree of frustration. The magnetic properties of the osmium phase differ markedly from those of the isostructural ruthenium material, which shows long-range antiferromagnetic order below 17 K, f = 6, and no unusual features at higher temperatures. Estimates of the magnetic exchange interactions at the level of spin-dimer analysis for both the ruthenium and osmium materials support a more frustrated picture for the latter. Errors in the calculation and assignment of the exchange pathways in the previous report on Li(3)Mg(2)RuO(6) are identified and corrected.

12.
Inorg Chem ; 51(4): 2638-44, 2012 Feb 20.
Article in English | MEDLINE | ID: mdl-22288463

ABSTRACT

The local and average crystal structures and magnetic properties of the oxygen-deficient perovskite Sr(2)Fe(1.5)Cr(0.5)O(5+y) were studied using powder X-ray and neutron diffraction, neutron-pair distribution function analysis, and electron energy-loss spectroscopy. This material crystallizes in the cubic Pm3m space group, with a = 3.94491(14) Å. The oxygen vacancies are distributed randomly throughout the perovskite-type structure, and the average coordination number of the Fe(Cr) sites is 5. Refinement of the neutron diffraction data indicates y ∼ 0.05. This is in discordance with an earlier report on a material with the same nominal composition and cell constant. Electron energy-loss Cr L(2,3)-edge spectroscopy shows that Cr(3+) is present, which is also contrary to previous speculation. Neutron-pair distribution function studies show that a brownmillerite-like model involving ordered vacancies and alternating octahedral and tetrahedral coordination at the metal sites, gives a better description of the local structure out to ∼5 Å. A remarkable phenomenon determined by neutron diffraction in Sr(2)Fe(1.5)Cr(0.5)O(5) is the occurrence of a long-range G-type antiferromagnetic ordering with T(c) ≈ 565 K because cubic oxygen-deficient perovskites with B-site disorder usually do not undergo transitions to magnetically ordered states. The observation of long-range antiferromagnetic order and the T(c) value are in accordance with previous Mössbauer spectroscopic studies.

13.
J Am Chem Soc ; 134(6): 3215-27, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22239480

ABSTRACT

Ten compounds belonging to the series of oxygen-deficient perovskite oxides Ca(2)Fe(2-x)Mn(x)O(5) and CaSrFe(2-x)Mn(x)O(5+y), where x = 1/2, 2/3, and 1 and y ≈ 0-0.5, were synthesized and investigated with respect to the ordering of oxygen vacancies on both local and long-range length scales and the effect on crystal structure and magnetic properties. For the set with y ≈ 0 the oxygen vacancies always order in the long-range sense to form the brownmillerite structure containing alternating layers of octahedrally and tetrahedrally coordinated cations. However, there is a change in symmetry from Pnma to Icmm upon substitution of Sr for one Ca for all x, indicating local T(d) chain (vacancy) disorder. In the special case of CaSrFeMnO(5) the neutron diffraction peaks broaden, indicating only short-range structural order on a length scale of ~160 Å. This reveals a systematic progression from Ca(2)FeMnO(5) (Pnma, well-ordered tetrahedral chains) to CaSrFeMnO(5) (Icmm, disordered tetrahedral chains, overall short-range order) to Sr(2)FeMnO(5) (Pm3m, destruction of tetrahedral chains in a long-range sense). Systematic changes occur in the magnetic properties as well. While long-range antiferromagnetic order is preserved, the magnetic transition temperature, T(c), decreases for the same x when Sr substitutes for one Ca. A review of the changes in T(c) for the series Ca(2)Fe(2-x)M(x)O(5), taking into account the tetrahedral/octahedral site preferences for the various M(3+) ions, leads to a partial understanding of the origin of magnetic order in these materials in terms of a layered antiferromagnetic model. While in all cases the preferred magnetic moment direction is (010) at low temperatures, there is a cross over for x = 0.5 to (100) with increasing temperature for both the Ca(2)Fe(2-x)Mn(x)O(5) and the CaSrFe(2-x)Mn(x)O(5) series. For the y > 0 phases, while a brownmillerite ordering of oxygen vacancies is preserved for the Ca(2) phases, a disordered Pm3m cubic perovskite structure is always found when Sr is substituted for one Ca. Long-range magnetic order is also lost, giving way to spin glass or cluster-glass-like behavior below ~50 K. For the x = 0.5 phase, neutron pair distribution function (NPDF) studies show a local structure related to brownmillerite ordering of oxygen vacancies. Neutron diffraction data at 3.8 K show a broad magnetic feature, incommensurate with any multiple of the chemical lattice, and with a correlation length (magnetic domain) of 6.7(4) Å.

14.
Inorg Chem ; 50(16): 7779-91, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21766787

ABSTRACT

Sr(2)FeMnO(5+y) was synthesized under two different conditions, in air and in argon, both of which resulted in a cubic, Pm ̅3m, structure with no long-range ordering of oxygen vacancies. The unit cell constants were found to be a(0) = 3.89328(1) Å for argon (y = 0.0) and a(0) = 3.83075(3) Å for air (y = 0.5). In contrast, Ca(2)FeMnO(5) retains long-range brownmillerite oxygen vacancy ordering for either air or argon synthesis. Remarkably, Sr(2)FeMnO(5.0) oxidizes spontaneously in air at room temperature. A neutron pair distribution function (NPDF) study of Sr(2)FeMnO(5.0)(Ar) showed evidence for local, brownmillerite-like ordering of oxygen vacancies for short distances up to 5 Å. Mössbauer spectroscopy results indicate more than one Fe site for Sr(2)FeMnO(5+y)(Ar and air), consistent with the noncubic local structure found by NPDF analysis. The isomer shifts and quadrupole splittings in both air- and argon-synthesized materials are consistent with the 3+ oxidation state for Fe in sites with coordination number four or five. This is confirmed by an L-edge XANES study. Mn is almost entirely in the 3+ state for Sr(2)FeMnO(5.0)(Ar), whereas Mn(4+) is predominantly present for Sr(2)FeMnO(5.5)(air). Magnetic susceptibility data show zero-field-cooled/field-cooled (ZFC/FC) divergences near 50 K for the Ar sample and 25 K for the air sample, whereas Ca(2)FeMnO(5) is long-range G-type antiferromagnetically ordered at 407(2) K. Hyperfine magnetic splitting, observed in temperature-dependent Mössbauer measurements, indicates short-range magnetic correlations that persist up to 150 K for Sr(2)FeMnO(5.0)(Ar) and 100 K for Sr(2)FeMnO(5.5)(air), well above the ZFC/FC divergence temperatures. Neutron diffraction data confirm the absence of long-range magnetic ordering at room temperature and 4 K for Sr(2)FeMnO(5.0)(Ar) but indicate the presence of domains with short-range G-type order at 4 K with an average dimension of ∼50 Å (y = 0); thus, this material is actually a superparamagnet rather than a true spin glass. In sharp contrast, corresponding data for Sr(2)FeMnO(5.5)(air) show mainly a very weak magnetic Bragg peak, indicating that ∼4% of the sample has G-type antiferromagnetic ordering at 4 K.

15.
J Phys Condens Matter ; 23(16): 164214, 2011 Apr 27.
Article in English | MEDLINE | ID: mdl-21471616

ABSTRACT

To understand the origin of the spin-glass state in molybdate pyrochlores, the structure of Tb(2)Mo(2)O(7) is investigated using two techniques: the long-range lattice structure was measured using neutron powder diffraction, and local structure information was obtained from the extended x-ray absorption fine structure technique. While the long-range structure appears generally well ordered, enhanced mean-squared site displacements on the O(1) site and the lack of temperature dependence of the strongly anisotropic displacement parameters for both the Mo and O(1) sites indicate some disorder exists. Likewise, the local structure measurements indicate some Mo-Mo and Tb-O(1) nearest-neighbor disorder exists, similar to that found in the related spin-glass pyrochlore, Y(2)Mo(2)O(7). Although the freezing temperature in Tb(2)Mo(2)O(7), 25 K, is slightly higher than in Y(2)Mo(2)O(7), 22 K, the degree of local pair distance disorder is actually less in Tb(2)Mo(2)O(7). This apparent contradiction is considered in light of the interactions involved in the freezing process.

16.
Inorg Chem ; 46(21): 8739-45, 2007 Oct 15.
Article in English | MEDLINE | ID: mdl-17854173

ABSTRACT

The compound La(3)Re(2)O(10) has been synthesized by solid-state reaction and characterized by powder neutron diffraction, SQUID magnetometry, and heat capacity measurements. Its structure consists of isolated [Re(2)O(10)](9-) dimer units of two edge-shared ReO(6) octahedra, separated by La(3+) within the lattice. The Re-Re distance within the dimer units is 2.488 A, which is indicative of metal-metal bonding with a bond order of 1.5. The average oxidation state of the Re atom is +5.5, leaving one unpaired electron per dimer unit (S = 1/2). Although the closest interdimer distance is 5.561 A, the magnetic susceptibility data and heat capacity measurements indicate this compound exhibits both short- and long-range magnetic order at surprisingly high temperatures. The zero field cooled (ZFC) magnetic susceptibility data show two broad features at 55 and 105 K, indicating short-range order, and a sharper cusp at 18 K, which signifies long-range antiferromagnetic order. The heat capacity of La(3)Re(2)O(10) shows a lambda-type anomaly at 18 K, which is characteristic of long-range magnetic order. DFT calculations determined that the unpaired electron resides in a pi-bonding orbital and that the unpaired electron density is widely delocalized over the atoms within the dimer, with high values at the bridging oxygens. Extended Hückel spin dimer calculations suggest possible interaction pathways between these dimer units within the crystal lattice. Results from the calculations and fits to the susceptibility data indicate that the short-range magnetic ordering may consist of 1-D antiferromagnetic linear chains of coupled S = 1/2 dimers. The magnetic structure of the antiferromagnetic ground state could not be determined by unpolarized neutron powder diffraction.

17.
Inorg Chem ; 45(13): 5109-18, 2006 Jun 26.
Article in English | MEDLINE | ID: mdl-16780333

ABSTRACT

Reduced layered M(C4H4N2)V4O10 ((I, M = Co; II, M = Ni; III, M = Zn); C4H4N2 = pyrazine, pyz) hybrid solids were synthesized via hydrothermal reactions at 200-230 degrees C, and their structures determined by single-crystal X-ray diffraction (Cmcm, No. 63, Z = 4; a = 14.311(2), 14.2372(4), 14.425(1) A; b = 6.997(1), 6.9008(2), 6.9702(6) A; and c = 11.4990(8), 11.5102(3), 11.479(1) A; for I, II, and III, respectively). All three solids are isostructural and contain V4O102- layers condensed from edge- and corner-shared VO5 square pyramids. A single symmetry-unique V atom is reduced by 1/2 electron (on average) and bonds via its apical oxygen atom to interlayer Mpyz2+ chains. Magnetic susceptibility measurements show a strong temperature dependence and a Curie constant that is consistent with two randomly localized spins per V4O10(2-) formula for III. Further, the unusual discovery of a remarkably well-defined transition to a singlet ground state, as well as formation of a spin gap, is found for III at 22(1) K. The temperature-dependent electrical conductivities show apparent activation energies of 0.36 (I), 0.46 (II), and 0.59 eV (III). During heating cycles in flowing N2, the samples exhibit weight losses corresponding to the removal of predominantly pyrazine, pyrazine fragments, and CO2 via reaction of pyrazine with the vanadate layer. The complete removal of pyrazine without loss of crystallinity is found for well-ground samples of I and III. The SEM images of I and II after heating at 400-500 degrees C show relatively intact crystals, but at 600 degrees C further structural collapse results in the formation of macropores at the surfaces.

18.
Inorg Chem ; 44(14): 5042-6, 2005 Jul 11.
Article in English | MEDLINE | ID: mdl-15998032

ABSTRACT

A new quaternary layered transition-metal oxide, Na2Cu2TeO6, has been synthesized under air using stoichiometric (with respect to the cationic elements) mixtures of Na2CO3, CuO, and TeO2. Na2Cu2TeO6 crystallizes in the monoclinic space group C2/m with a = 5.7059(6) A, b = 8.6751(9) A, c = 5.9380(6) A, beta = 113.740(2) degrees, V = 269.05(5) A3, and Z = 2, as determined by single-crystal X-ray diffraction. The structure is composed of infinity(2)[Cu2TeO6] layers with the Na atoms located in the octahedral voids between the layers. Na2Cu2TeO6 is a green nonmetallic compound, in agreement with the electronic structure calculation and electrical resistance measurement. The magnetic susceptibility shows Curie-Weiss behavior between 300 and 600 K with an effective moment of 1.85(2) muB/Cu(II) and theta(c) = -87(6) K. A broad maximum at 160 K is interpreted as arising from short-range one-dimensional antiferromagnetic correlations. With the aid of the technique of magnetic dimers, the short-range order was analyzed in terms of an alternating chain model, with the surprising result that the stronger intrachain coupling involves a super-superexchange pathway with a Cu-Cu separation of >5 A. The J2/J1 ratio within the alternating chain refined to 0.10(1), and the spin gap is estimated to be 127 K.

19.
Inorg Chem ; 43(20): 6473-8, 2004 Oct 04.
Article in English | MEDLINE | ID: mdl-15446899

ABSTRACT

A new modification of CuTi(2)S(4) was prepared from the elements at 425 degrees C. It crystallizes in the rhombohedral space group Rm, with lattice parameters of a = 7.0242(4) A, c = 34.834(4) A, and V = 1488.4(2) A(3) (Z = 12). Two topologically different interlayer regions exist between the close-packed S layers that alternate along the c axis: one comprises both Cu (in tetrahedral voids) and Ti atoms (in octahedral voids), and the second exclusively Ti atoms (again in octahedral voids). In contrast to the known modification, the spinel, Cu-Ti interactions of 2.88 A occur that have bonding character according to the electronic structure calculations. Both CuTi(2)S(4) modifications are metallic Pauli paramagnets due to Ti d contributions. The Pauli susceptibility of the Rm form is larger than that of the thiospinel in quantitative agreement with the LMTO-ASA band structure calculations. The irreversible transformation to the spinel takes place at temperatures above 450 degrees C.


Subject(s)
Copper/chemistry , Sulfur/chemistry , Titanium/chemistry , Chemical Phenomena , Chemistry, Physical , Crystallography, X-Ray , Temperature
20.
J Am Chem Soc ; 124(42): 12522-34, 2002 Oct 23.
Article in English | MEDLINE | ID: mdl-12381196

ABSTRACT

Pt(0)-catalyzed ring-opening precipitation copolymerization of [1]silaferrocenophanes fcSiMe(2) (3) and the spirocyclic cross-linker fcSi(CH(2))(3) (4) (fc = Fe(eta(5)-C(5)H(4))(2)) was used to prepare polyferrocenylsilane microspheres (PFSMSs) under mild conditions. By varying the reaction conditions, a wide variety of other morphologies was obtained. The effects of temperature, monomer ratio, solvent composition, catalyst concentration, and time on the observed morphology were investigated and interpreted in terms of a mechanism for microsphere formation. The most well-defined particles were formed using equimolar amounts of 3 and 4, in a 50:50 mixture of xylenes and decane at 60 degrees C with gentle agitation. Chemical oxidation of the polymeric microspheres led to positively charged particles (OPFSMSs) which underwent electrostatically driven self-assembly with negatively charged silica microspheres to form core-corona composite particles. Redox titration with controlled amounts of the one-electron oxidant [N(C(6)H(4)Br-p)(3)][PF(6)] in acetonitrile led to the oxidation of the outer 0.15 microm (ca. 32%) of the PFSMSs. The resulting OPFSMSs were reduced back to their neutral form by reaction with hydrazine in methanol. Pyrolysis of the PFSMSs led to spherical magnetic ceramic replicas with tunable magnetic properties that organize into ordered 2-D arrays at the air-water interface under the influence of a magnetic field.

SELECTION OF CITATIONS
SEARCH DETAIL
...