Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Cell Rep Methods ; 4(5): 100764, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38714198

ABSTRACT

Co-assembling enzymes with nanoparticles (NPs) into nanoclusters allows them to access channeling, a highly efficient form of multienzyme catalysis. Using pyruvate kinase (PykA) and lactate dehydrogenase (LDH) to convert phosphoenolpyruvic acid to lactic acid with semiconductor quantum dots (QDs) confirms how enzyme cluster formation dictates the rate of coupled catalytic flux (kflux) across a series of differentially sized/shaped QDs and 2D nanoplatelets (NPLs). Enzyme kinetics and coupled flux were used to demonstrate that by mixing different NP systems into clusters, a >10× improvement in kflux is observed relative to free enzymes, which is also ≥2× greater than enhancement on individual NPs. Cluster formation was characterized with gel electrophoresis and transmission electron microscopy (TEM) imaging. The generalizability of this mixed-NP approach to improving flux is confirmed by application to a seven-enzyme system. This represents a powerful approach for accessing channeling with almost any choice of enzymes constituting a multienzyme cascade.


Subject(s)
L-Lactate Dehydrogenase , Lactic Acid , Nanoparticles , Phosphoenolpyruvate , Pyruvate Kinase , L-Lactate Dehydrogenase/metabolism , L-Lactate Dehydrogenase/chemistry , Lactic Acid/metabolism , Lactic Acid/chemistry , Pyruvate Kinase/metabolism , Pyruvate Kinase/chemistry , Nanoparticles/chemistry , Phosphoenolpyruvate/metabolism , Quantum Dots/chemistry , Kinetics
2.
ACS Appl Mater Interfaces ; 16(17): 22334-22343, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38635042

ABSTRACT

The number of applications of self-assembled deoxyribonucleic acid (DNA) origami nanoparticles (DNA NPs) has increased drastically, following the development of a variety of single-stranded template DNA (ssDNA) that can serve as the scaffold strand. In addition to viral genomes, such as M13 bacteriophage and lambda DNAs, enzymatically produced ssDNA from various template sources is rapidly gaining traction and being applied as the scaffold for DNA NP preparation. However, separating fully formed DNA NPs that have custom scaffolds from crude assembly mixes is often a multistep process of first separating the ssDNA scaffold from its enzymatic amplification process and then isolating the assembled DNA NPs from excess precursor strands. Only then is the DNA NP sample ready for downstream characterization and application. In this work, we highlight a single-step purification of custom sequence- or M13-derived scaffold-based DNA NPs using photocleavable biotin tethers. The process only requires an inexpensive ultraviolet (UV) lamp, and DNA NPs with up to 90% yield and high purity are obtained. We show the versatility of the process in separating two multihelix bundle structures and a wireframe polyhedral architecture.


Subject(s)
Biotin , DNA, Single-Stranded , Nanoparticles , Biotin/chemistry , Nanoparticles/chemistry , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/isolation & purification , Bacteriophage M13/chemistry , Bacteriophage M13/genetics , DNA/chemistry , DNA/isolation & purification , Ultraviolet Rays
3.
Commun Chem ; 7(1): 49, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424154

ABSTRACT

Peptide-based liquid-liquid phase separated domains, or coacervates, are a biomaterial gaining new interest due to their exciting potential in fields ranging from biosensing to drug delivery. In this study, we demonstrate that coacervates provide a simple and biocompatible medium to improve nucleic acid biosensors through the sequestration of both the biosensor and target strands within the coacervate, thereby increasing their local concentration. Using the well-established polyarginine (R9) - ATP coacervate system and an energy transfer-based DNA molecular beacon we observed three key improvements: i) a greater than 20-fold reduction of the limit of detection within coacervates when compared to control buffer solutions; ii) an increase in the kinetics, equilibrium was reached more than 4-times faster in coacervates; and iii) enhancement in the dye fluorescent quantum yields within the coacervates, resulting in greater signal-to-noise. The observed benefits translate into coacervates greatly improving bioassay functionality.

4.
Small ; 20(14): e2303136, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37749947

ABSTRACT

This work investigates the effect of plasmonic gold nanoparticle (AuNP) size on the rate of thermal release of single-stranded oligonucleotides under femtosecond (fs)-pulsed laser irradiation sources. Contrary to the theoretical predictions that larger AuNPs (50-60 nm diameter) would produce the most solution heating and fastest DNA release, it is found that smaller AuNP diameters (25 nm) lead to faster dsDNA denaturation rates. Controlling for the pulse energy fluence, AuNP concentration, DNA loading density, and the distance from the AuNP surface finds the same result. These results imply that the solution temperature increases around the AuNP during fs laser pulse optical heating may not be the only significant influence on dsDNA denaturation, suggesting that direct energy transfer from the AuNP to the DNA (phonon-phonon coupling), which is increased as AuNPs decrease in size, may play a significant role.


Subject(s)
Gold , Metal Nanoparticles , Heating , Lasers , DNA
5.
ACS Sens ; 9(1): 157-170, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38160434

ABSTRACT

Almost all pathogens, whether viral or bacterial, utilize key proteolytic steps in their pathogenesis. The ability to detect a pathogen's genomic material along with its proteolytic activity represents one approach to identifying the pathogen and providing initial evidence of its viability. Here, we report on a prototype biosensor design assembled around a single semiconductor quantum dot (QD) scaffold that is capable of detecting both nucleic acid sequences and proteolytic activity by using orthogonal energy transfer (ET) processes. The sensor consists of a central QD assembled via peptidyl-PNA linkers with multiple DNA sequences that encode complements to genomic sequences originating from the Ebola, Influenza, and COVID-19 viruses, which we use as surrogate targets. These are hybridized to complement strands labeled with a terbium (Tb) chelate, AlexaFluor647 (AF647), and Cy5.5 dyes, giving rise to two potential FRET cascades: the first includes Tb → QD → AF647 → Cy5.5 (→ = ET step), which is detected in a time-gated modality, and QD → AF647 → Cy5.5, which is detected from direct excitation. The labeled DNA-displaying QD construct is then further assembled with a RuII-modified peptide, which quenches QD photoluminescence by charge transfer and is recognized by a protease to yield the full biosensor. Each of the labeled DNAs and peptides can be ratiometrically assembled to the QD in a controllable manner to tune each of the ET pathways. Addition of a given target DNA displaces its labeled complement on the QD, disrupting that FRET channel, while protease addition disrupts charge transfer quenching of the central QD scaffold and boosts its photoluminescence and FRET relay capabilities. Along with characterizing the ET pathways and verifying biosensing in both individual and multiplexed formats, we also demonstrate the ability of this construct to function in molecular logic and perform Boolean operations; this highlights the construct's ability to discriminate and transduce signals between different inputs or pathogens. The potential application space for such a sensor device is discussed.


Subject(s)
Biosensing Techniques , Carbocyanines , Quantum Dots , Quantum Dots/chemistry , Peptide Hydrolases/metabolism , Fluorescence Resonance Energy Transfer , Peptides/chemistry , DNA/chemistry , Endopeptidases/metabolism
6.
Nanoscale ; 15(23): 10159-10175, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37272342

ABSTRACT

Enzyme activity can be many times enhanced in configurations where they are displayed on a nanoparticle (NP) and this same format sometimes even provides access to channeling phenomena within multienzyme cascades. Here, we demonstrate that such enhancement phenomena can be expanded to enzymatic cofactor recycling along with the coupled enzymatic processes that they are associated with. We begin by showing that the efficiency of glucose driven reduction of nicotinamide adenine dinucleotide (NAD+ → NADH) by glucose dehydrogenase (GDH) is enhanced ca. 5-fold when the enzyme is displayed on nanocrystalline semiconductor quantum dots (QDs) which are utilized as prototypical NP materials in our experimental assays. Coupling this enzymatic step with NADH-dependent lactate dehydrogenase (LDH) conversion of lactate to pyruvate also increases the latter's rate by a similar amount when both enzymes were jointly incorporated into self-assembled QD-based nanoclusters. Detailed agarose gel mobility assays and transmission electron microscopy imaging studies confirm that both tetrameric enzymes assemble to and crosslink the QDs into structured nanoclusters via their multiple-pendant terminal (His)6 sequences. Unexpectedly, control experiments utilizing blocking peptides to prevent enzyme-crosslinking of QDs resulted in even further enhancement of individual enzyme on-QD kinetic activity. This activity was also probed revealing that 200-fold excess peptide/QD addition enhanced individual GDH and LDH on-QD kcat a further 2- and 1.5×, respectively, above that seen just by QD display to a maximum of ∼10-fold GDH enhancement. The potential implications for how these enzyme kinetics-enhancing phenomena can be applied to single and multi-enzyme cascaded reactions in the context of cofactor recycling and cell-free synthetic biology are discussed.


Subject(s)
Nanoparticles , Quantum Dots , NAD/chemistry , Kinetics , Nanoparticles/chemistry , Quantum Dots/chemistry , L-Lactate Dehydrogenase/metabolism , Peptides/chemistry
7.
ACS Appl Mater Interfaces ; 15(23): 27759-27773, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37267624

ABSTRACT

Functional DNA origami nanoparticles (DNA-NPs) are used as nanocarriers in a variety of biomedical applications including targeted drug delivery and vaccine development. DNA-NPs can be designed into a broad range of nanoarchitectures in one, two, and three dimensions with high structural fidelity. Moreover, the addressability of the DNA-NPs enables the precise organization of functional moieties, which improves targeting, actuation, and stability. DNA-NPs are usually functionalized via chemically modified staple strands, which can be further conjugated with additional polymers and proteins for the intended application. Although this method of functionalization is extremely efficient to control the stoichiometry and organization of functional moieties, fewer than half of the permissible sites are accessible through staple modifications. In addition, DNA-NP functionalization rapidly becomes expensive when a high number of functionalizations such as fluorophores for tracking and chemical modifications for stability that do not require spatially precise organization are used. To facilitate the synthesis of functional DNA-NPs, we propose a simple and robust strategy based on an asymmetric polymerase chain reaction (aPCR) protocol that allows direct synthesis of custom-length scaffolds that can be randomly modified and/or precisely modified via sequence design. We demonstrated the potential of our strategy by producing and characterizing heavily modified scaffold strands with amine groups for dye functionalization, phosphorothioate bonds for stability, and biotin for surface immobilization. We further validated our sequence design approach for precise conjugation of biomolecules by synthetizing scaffolds including binding loops and aptamer sequences that can be used for direct hybridization of nucleic acid tagged biomolecules or binding of protein targets.


Subject(s)
Nanoparticles , Nanostructures , DNA/chemistry , Nucleic Acid Hybridization , Oligonucleotides , Nanostructures/chemistry , Nucleic Acid Conformation , Nanotechnology/methods
8.
Nanoscale ; 15(6): 2516-2528, 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36722508

ABSTRACT

The physical and chemical properties of synthetic DNA have transformed this prototypical biopolymer into a versatile nanoscale building block material in the form of DNA nanotechnology. DNA nanotechnology is, in turn, providing unprecedented precision bioengineering for numerous biomedical applications at the nanoscale including next generation immune-modulatory materials, vectors for targeted delivery of nucleic acids, drugs, and contrast agents, intelligent sensors for diagnostics, and theranostics, which combines several of these functionalities into a single construct. Assembling a DNA nanostructure to be programmed with a specific number of targeting moieties on its surface to imbue it with concomitant cellular uptake and retention capabilities along with carrying a specific therapeutic dose is now eminently feasible due to the extraordinary self-assembling properties and high formation efficiency of these materials. However, what remains still only partially addressed is how exactly this class of materials is taken up into cells in both the native state and as targeted or chemically facilitated, along with how stable they are inside the cellular cytosol and other cellular organelles. In this minireview, we summarize what is currently reported in the literature about how (i) DNA nanostructures are taken up into cells along with (ii) what is understood about their subsequent stability in the complex multi-organelle environment of the cellular milieu along with biological fluids in general. This allows us to highlight the many challenges that still remain to overcome in understanding DNA nanostructure-cellular interactions in order to fully translate these exciting new materials.


Subject(s)
Nanostructures , Cross-Sectional Studies , Nanostructures/chemistry , Nanotechnology , DNA/chemistry , Pharmaceutical Preparations
9.
Methods Appl Fluoresc ; 11(1)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36719011

ABSTRACT

Coherently coupled pseudoisocyanine (PIC) dye aggregates have demonstrated the ability to delocalize electronic excitations and ultimately migrate excitons with much higher efficiency than similar designs where excitations are isolated to individual chromophores. Here, we report initial evidence of a new type of PIC aggregate, formed through heterogeneous nucleation on DNA oligonucleotides, displaying photophysical properties that differ significantly from previously reported aggregates. This new aggregate, which we call the super aggregate (SA) due to the need for elevated dye excess to form it, is clearly differentiated from previously reported aggregates by spectroscopic and biophysical characterization. In emission spectra, the SA exhibits peak narrowing and, in some cases, significant quantum yield variation, indicative of stronger coupling in cyanine dyes. The SA was further characterized with circular dichroism and atomic force microscopy observing unique features depending on the DNA substrate. Then by integrating an AlexaFluorTM647 (AF) dye as an energy transfer acceptor into the system, we observed mixed energy transfer characteristics using the different DNA. For example, SA formed with a rigid DNA double crossover tile (DX-tile) substrate resulted in AF emission sensitization. While SA formed with more flexible non-DX-tile DNA (i.e. duplex and single strand DNA) resulted in AF emission quenching. These combined characterizations strongly imply that DNA-based PIC aggregate properties can be controlled through simple modifications to the DNA substrate's sequence and geometry. Ultimately, we aim to inform rational design principles for future device prototyping. For example, one key conclusion of the study is that the high absorbance cross-section and efficient energy transfer observed with rigid substrates made for better photonic antennae, compared to flexible DNA substrates.


Subject(s)
Quinolines , Quinolines/chemistry , DNA/chemistry , DNA, Single-Stranded , Circular Dichroism
10.
ACS Nano ; 16(12): 20693-20704, 2022 12 27.
Article in English | MEDLINE | ID: mdl-36378103

ABSTRACT

Strategies utilizing the CRISPR/Cas nucleases Cas13 and Cas12 have shown great promise in the development of highly sensitive and rapid diagnostic assays for the detection of pathogenic nucleic acids. The most common approaches utilizing fluorophore-quencher molecular beacons require strand amplification strategies or highly sensitive optical setups to overcome the limitations of the readout. Here, we demonstrate a flexible strategy for assembling highly luminescent and colorimetric quantum dot-nucleic acid hairpin (QD-HP) molecular beacons for use in CRISPR/Cas diagnostics. This strategy utilizes a chimeric peptide-peptide nucleic acid (peptide-PNA) to conjugate fluorescently labeled DNA or RNA hairpins to ZnS-coated QDs. QDs are particularly promising alternatives for molecular beacons due to their greater brightness, strong UV absorbance with large emission offset, exceptional photostability, and potential for multiplexing due to their sharp emission peaks. Using Förster resonance energy transfer (FRET), we have developed ratiometric reporters capable of pM target detection (without nucleotide amplification) for both target DNA and RNA, and we further demonstrated their capabilities for multiplexing and camera-phone detection. The flexibility of this system is imparted by the dual functionality of the QD as both a FRET donor and a central nanoscaffold for arranging nucleic acids and fluorescent acceptors on its surface. This method also provides a generalized approach that could be applied for use in other CRISPR/Cas nuclease systems.


Subject(s)
Nucleic Acids , Quantum Dots , Quantum Dots/chemistry , CRISPR-Cas Systems , DNA/chemistry , RNA , Peptides/chemistry , Fluorescence Resonance Energy Transfer/methods
11.
Methods Mol Biol ; 2525: 61-91, 2022.
Article in English | MEDLINE | ID: mdl-35836061

ABSTRACT

DNA nanostructures self-assemble into almost any arbitrary architecture, and when combined with their capability to precisely position and orient dyes, nanoparticles, and biological moieties, the technology reaches its potential. We present a simple yet multifaceted conjugation strategy based on metal coordination by a multi-histidine peptide tag (Histag). The versatility of the Histag as a means to conjugate to DNA nanostructures is shown by using Histags to capture semiconductor quantum dots (QDs) with numerical and positional precision onto a DNA origami breadboard. Additionally, Histag-expressing enzymes, such as the bioluminescent luciferase, can also be captured to the DNA origami breadboard with similar precision. DNA nanostructure conjugation of the QDs or luciferase is confirmed through imaging and/or energy transfer to organic dyes integrated into the DNA nanostructure.


Subject(s)
Nanostructures , Quantum Dots , Coloring Agents , DNA/chemistry , Histidine/chemistry , Luciferases/chemistry , Quantum Dots/chemistry
12.
Sci Rep ; 12(1): 3871, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35264624

ABSTRACT

The intra-image identification of DNA structures is essential to rapid prototyping and quality control of self-assembled DNA origami scaffold systems. We postulate that the YOLO modern object detection platform commonly used for facial recognition can be applied to rapidly scour atomic force microscope (AFM) images for identifying correctly formed DNA nanostructures with high fidelity. To make this approach widely available, we use open-source software and provide a straightforward procedure for designing a tailored, intelligent identification platform which can easily be repurposed to fit arbitrary structural geometries beyond AFM images of DNA structures. Here, we describe methods to acquire and generate the necessary components to create this robust system. Beginning with DNA structure design, we detail AFM imaging, data point annotation, data augmentation, model training, and inference. To demonstrate the adaptability of this system, we assembled two distinct DNA origami architectures (triangles and breadboards) for detection in raw AFM images. Using the images acquired of each structure, we trained two separate single class object identification models unique to each architecture. By applying these models in sequence, we correctly identified 3470 structures from a total population of 3617 using images that sometimes included a third DNA origami structure as well as other impurities. Analysis was completed in under 20 s with results yielding an F1 score of 0.96 using our approach.


Subject(s)
Nanostructures , DNA/chemistry , Microscopy, Atomic Force/methods , Nanostructures/chemistry , Nanotechnology/methods , Neural Networks, Computer , Nucleic Acid Conformation , Software
13.
ACS Nano ; 15(7): 11597-11606, 2021 07 27.
Article in English | MEDLINE | ID: mdl-34137595

ABSTRACT

To bring real-world applications of DNA nanostructures to fruition, advanced microscopy techniques are needed to shed light on factors limiting the availability of addressable sites. Correlative microscopy, where two or more microscopies are combined to characterize the same sample, is an approach to overcome the limitations of individual techniques, yet it has seen limited use for DNA nanotechnology. We have developed an accessible strategy for high resolution, correlative DNA-based points accumulation for imaging in nanoscale topography (DNA-PAINT) super-resolution and atomic force microscopy (AFM) of DNA nanostructures, enabled by a simple and robust method to selectively bind DNA origami to cover glass. Using this technique, we examined addressable "docking" sites on DNA origami to distinguish between two defect scenarios-structurally incorporated but inactive docking sites, and unincorporated docking sites. We found that over 75% of defective docking sites were incorporated but inactive, suggesting unincorporated strands played a minor role in limiting the availability of addressable sites. We further explored the effects of strand purification, UV irradiation, and photooxidation on availability, providing insight on potential sources of defects and pathways toward improving the fidelity of DNA nanostructures.


Subject(s)
Nanostructures , Microscopy, Atomic Force/methods , Nanostructures/chemistry , DNA/chemistry , Nanotechnology/methods , Nucleic Acid Conformation
14.
ACS Nano ; 15(5): 9101-9110, 2021 05 25.
Article in English | MEDLINE | ID: mdl-33955735

ABSTRACT

DNA nanotechnology has proven to be a powerful strategy for the bottom-up preparation of colloidal nanoparticle (NP) superstructures, enabling the coordination of multiple NPs with orientation and separation approaching nanometer precision. To do this, NPs are often conjugated with chemically modified, single-stranded (ss) DNA that can recognize complementary ssDNA on the DNA nanostructure. The limitation is that many NPs cannot be easily conjugated with ssDNA, and other conjugation strategies are expensive, inefficient, or reduce the specificity and/or precision with which NPs can be placed. As an alternative, the conjugation of nanoparticle-binding peptides and peptide nucleic acids (PNA) can produce peptide-PNA with distinct NP-binding and DNA-binding domains. Here, we demonstrate a simple application of this method to conjugate semiconductor quantum dots (QDs) directly to DNA nanostructures by means of a peptide-PNA with a six-histidine peptide motif that binds to the QD surface. With this method, we achieved greater than 90% capture efficiency for multiple QDs on a single DNA nanostructure while preserving both site specificity and precise spatial control of QD placement. Additionally, we investigated the effects of peptide-PNA charge on the efficacy of QD immobilization in suboptimal conditions. The results validate peptide-PNA as a viable alternative to ssDNA conjugation of NPs and warrant studies of other NP-binding peptides for peptide-PNA conjugation.


Subject(s)
Nanostructures , Peptide Nucleic Acids , Quantum Dots , DNA , Peptides
15.
Nat Commun ; 12(1): 2371, 2021 04 22.
Article in English | MEDLINE | ID: mdl-33888693

ABSTRACT

DNA is a compelling alternative to non-volatile information storage technologies due to its information density, stability, and energy efficiency. Previous studies have used artificially synthesized DNA to store data and automated next-generation sequencing to read it back. Here, we report digital Nucleic Acid Memory (dNAM) for applications that require a limited amount of data to have high information density, redundancy, and copy number. In dNAM, data is encoded by selecting combinations of single-stranded DNA with (1) or without (0) docking-site domains. When self-assembled with scaffold DNA, staple strands form DNA origami breadboards. Information encoded into the breadboards is read by monitoring the binding of fluorescent imager probes using DNA-PAINT super-resolution microscopy. To enhance data retention, a multi-layer error correction scheme that combines fountain and bi-level parity codes is used. As a prototype, fifteen origami encoded with 'Data is in our DNA!\n' are analyzed. Each origami encodes unique data-droplet, index, orientation, and error-correction information. The error-correction algorithms fully recover the message when individual docking sites, or entire origami, are missing. Unlike other approaches to DNA-based data storage, reading dNAM does not require sequencing. As such, it offers an additional path to explore the advantages and disadvantages of DNA as an emerging memory material.


Subject(s)
DNA, Single-Stranded/chemistry , Information Storage and Retrieval/methods , Nanostructures/chemistry , Nanotechnology/methods , Algorithms , Nucleic Acid Conformation , Proof of Concept Study
16.
J Mater Chem B ; 8(29): 6170-6178, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32239041

ABSTRACT

Structural DNA nanotechnology is poised to transform targeted therapeutic and theranostic delivery agents. Some of the most promising biomedical applications of DNA nanostructures include carriers for biosensing, imaging, and drug delivery. Additionally, the unique ability to precisely position inorganic and organic molecules on DNA-based substrates enables the spatially optimized high density interfacing of ligands with cell membrane receptors. To realize clinically viable biomedical products made from DNA nanostructures, it is necessary to fully understand the behavior of these systems inside and outside the cellular environment. To that end, cohesive and conclusive information on the physiological fate of DNA nanostructures at various time points - from the cell culture to the cell cytosol - is still lacking. In this highlight, we bring to attention efforts to understand DNA nanostructure behavior in vitro as well as some widespread disparities among studies on the subject. We also call for a discussion on the implementation of common standards and controls to address these disparities and consequently unify the scientific community's endeavours to build foundational knowledge on DNA nanostructure-cellular interaction.


Subject(s)
Cells/metabolism , DNA/chemistry , DNA/metabolism , Nanostructures , Animals , Humans
17.
Nanoscale ; 9(29): 10205-10211, 2017 Jul 27.
Article in English | MEDLINE | ID: mdl-28489095

ABSTRACT

Recent results in the assembly of DNA into structures and arrays with nanoscale features and patterns have opened the possibility of using DNA for sub-10 nm lithographic patterning of semiconductor devices. Super-resolution microscopy is being actively developed for DNA-based imaging and is compatible with inline optical metrology techniques for high volume manufacturing. Here, we combine DNA tile assembly with state-dependent super-resolution microscopy to introduce crystal-PAINT as a novel approach for metrology of DNA arrays. Using this approach, we demonstrate optical imaging and characterization of DNA arrays revealing grain boundaries and the temperature dependence of array quality. For finite arrays, analysis of crystal-PAINT images provides further quantitative information of array properties. This metrology approach enables defect detection and classification and facilitates statistical analysis of self-assembled DNA nanostructures.


Subject(s)
DNA/chemistry , Microscopy , Nanostructures/chemistry , Oligonucleotide Array Sequence Analysis , Optical Imaging
18.
J Environ Health ; 73(1): 8-13; quiz 38, 2010.
Article in English | MEDLINE | ID: mdl-20687326

ABSTRACT

Tropospheric ozone concentrations for Kansas City are well known on a regional scale. The Kansas City, Missouri, ground-level ozone (GLO) project measured outdoor ozone concentrations using passive sensing devices (PSDs) on a neighborhood scale. Highly resolved exposure maps were made based on the detailed air quality observations collected during the seven week sampling study during the summer of 2005. Data analysis demonstated that ozone concentration levels were higher in urban core neighborhoods compared to the surrounding surbuban areas. The results have negative implications for the respiratory health of residents of urban Kansas City.


Subject(s)
Air Pollutants/analysis , Ozone/analysis , Residence Characteristics , Humans , Missouri , Seasons , Urban Population
SELECTION OF CITATIONS
SEARCH DETAIL
...