Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Invest ; 91(6): 852-8, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21403643

ABSTRACT

Tenofovir disoproxil fumarate (TDF) is an oral prodrug and acyclic nucleotide analog of adenosine monophosphate that inhibits HIV-1 (HIV) reverse transcriptase. A growing subset of TDF-treated HIV(+) individuals presented with acute renal failure, suggesting tenofovir-associated kidney-specific toxicity. Our previous studies using an HIV transgenic mouse model (TG) demonstrated specific changes in renal proximal tubular mitochondrial DNA (mtDNA) abundance. Nucleosides are regulated in biological systems via transport and metabolism in cellular compartments. In this study, the role(s) of organic anion transporter type 1 (OAT1) and multidrug-resistant protein type 4 (MRP4) in transport and regulation of tenofovir in proximal tubules were assessed. Renal toxicity was assessed in kidney tissues from OAT1 knockout (KO) or MRP4 KO compared with wild-type (WT, C57BL/6) mice following treatment with TDF (0.11 mg/day), didanosine (ddI, a related adenosine analog, 0.14 mg/day) or vehicle (0.1 M NaOH) daily gavage for 5 weeks. Laser-capture microdissection (LCM) was used to isolate renal proximal tubules for molecular analyses. mtDNA abundance and ultrastructural pathology were analyzed. mtDNA abundance in whole kidneys from both KO and WT was unchanged regardless of treatment. Renal proximal tubular mtDNA abundance from OAT1 KO also remained unchanged, suggesting prevention of TDF toxicity due to loss of tenofovir transport into proximal tubules. In contrast, renal proximal tubules from MRP4 KO exhibited increased mtDNA abundance following TDF treatment compared with WT littermates, suggesting compensation. Renal proximal tubules from TDF-treated WT and MRP4 KO exhibited increased numbers of irregular mitochondria with sparse, fragmented cristae compared with OAT1 KO. Treatment with ddI had a compensatory effect on mtDNA abundance in OAT1 KO but not in MRP4 KO. Both OAT1 and MRP4 have a direct role in transport and efflux of tenofovir, regulating levels of tenofovir in proximal tubules. Disruption of OAT1 activity prevents tenofovir toxicity but loss of MRP4 can lead to increased renal proximal tubular toxicity. These data help to explain mechanisms of human TDF renal toxicity.


Subject(s)
Adenine/analogs & derivatives , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/metabolism , Multidrug Resistance-Associated Proteins/metabolism , Organic Anion Transport Protein 1/metabolism , Organophosphonates/toxicity , Adenine/administration & dosage , Adenine/toxicity , Analysis of Variance , Animals , DNA, Mitochondrial/metabolism , Kidney Tubules, Proximal/pathology , Lasers , Mice , Mice, Inbred C57BL , Mice, Knockout , Microdissection , Mitochondria/pathology , Multidrug Resistance-Associated Proteins/genetics , Organic Anion Transport Protein 1/genetics , Organophosphonates/administration & dosage , Reverse Transcriptase Polymerase Chain Reaction , Tenofovir
2.
Cardiovasc Toxicol ; 10(2): 146-51, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20379802

ABSTRACT

Abacavir (ABC) is a guanosine nucleoside reverse transcriptase inhibitor (NRTI) with potent antiretroviral activity. Since NRTIs exhibit tissue-specific inhibition of mitochondrial DNA (mtDNA) synthesis, the ability of ABC to inhibit mtDNA synthesis in vivo was evaluated. Inbred wild-type (WT) and transgenic mice (TG) treated with ABC (3.125 mg/d p. o., 35 days) were used to define mitochondrial oxidative stress and cardiac function. Chosen TGs exhibited overexpression of HIV-1 viral proteins (NL4-3Deltagag/pol, non-replication competent), hemizygous depletion or overexpression of mitochondrial superoxide dismutase (SOD2(+/-) knock-out (KO) or MnSOD OX, respectively), overexpression of mitochondrially targeted catalase (MCAT), or double "knockout" deletion of aldehyde dehydrogenase activity (ALDH2 KO). Impact on mtDNA synthesis was assessed by comparing changes in mtDNA abundance between ABC-treated and vehicle-treated WTs and TGs. No changes in mtDNA abundance occurred from ABC treatment in any mice, suggesting no inhibition of mtDNA synthesis. Left ventricle (LV) mass and LV end-diastolic dimension (LVEDD) were defined echocardiographically and remained unchanged as well. These results indicate that treatment with ABC has no visible cardiotoxicity in these adult mice exposed for 5 weeks compared to findings with other antiretroviral NRTI studies and support some claims for its relative safety.


Subject(s)
Anti-HIV Agents/toxicity , Dideoxynucleosides/toxicity , Heart Diseases/chemically induced , Heart/drug effects , Mitochondria, Heart/drug effects , Animals , DNA, Mitochondrial/biosynthesis , Echocardiography , Heart Diseases/physiopathology , Heart Ventricles/drug effects , Heart Ventricles/pathology , Mice , Mice, Inbred C57BL , Mice, Inbred Strains , Mice, Knockout , Mitochondria, Heart/enzymology , Mitochondria, Heart/genetics , Oxidative Stress/drug effects , Superoxide Dismutase
3.
Lab Invest ; 90(3): 383-90, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20065942

ABSTRACT

Thymidylate kinase (TMPK) is a nucleoside monophosphate kinase that catalyzes phosphorylation of thymidine monophosphate to thymidine diphosphate. TMPK also mediates phosphorylation of monophosphates of thymidine nucleoside analog (NA) prodrugs on the pathway to their active triphosphate antiviral or antitumor moieties. Novel transgenic mice (TG) expressing human (h) TMPK were genetically engineered using the alpha-myosin heavy chain promoter to drive its cardiac-targeted overexpression. In '2 by 2' protocols, TMPK TGs and wild-type (WT) littermates were treated with the NA zidovudine (a deoxythymidine analog, 3'-azido-3'deoxythymidine (AZT)) or vehicle for 35 days. Alternatively, TGs and WTs were treated with a deoxycytidine NA (racivir, RCV) or vehicle. Changes in mitochondrial DNA (mtDNA) abundance and mitochondrial ultrastructure were defined quantitatively by real-time PCR and transmission electron microscopy, respectively. Cardiac performance was determined echocardiographically. Results showed TMPK TGs treated with either AZT or RCV exhibited decreased cardiac mtDNA abundance. Cardiac ultrastructural changes were seen only with AZT. AZT-treated TGs exhibited increased left ventricle (LV) mass. In contrast, LV mass in RCV-treated TGs and WTs remained unchanged. In all cohorts, LV end-diastolic dimension remained unchanged. This novel cardiac-targeted overexpression of hTMPK helps define the role of TMPK in mitochondrial toxicity of antiretrovirals.


Subject(s)
Anti-HIV Agents/toxicity , DNA, Mitochondrial/metabolism , Myocardium/metabolism , Nucleoside-Phosphate Kinase/metabolism , Nucleosides/metabolism , Zalcitabine/analogs & derivatives , Zidovudine/toxicity , Animals , Anti-HIV Agents/metabolism , DNA Replication/drug effects , DNA, Mitochondrial/drug effects , Echocardiography , Emtricitabine/analogs & derivatives , Female , Humans , Hypertrophy, Left Ventricular/chemically induced , Hypertrophy, Left Ventricular/diagnostic imaging , Male , Mice , Mice, Transgenic , Mitochondria, Heart/drug effects , Mitochondria, Heart/ultrastructure , Myocardium/pathology , Myocardium/ultrastructure , Nucleoside-Phosphate Kinase/genetics , Phosphorylation , Ventricular Function, Left , Zalcitabine/metabolism , Zalcitabine/toxicity , Zidovudine/metabolism
4.
Lab Invest ; 89(7): 782-90, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19398959

ABSTRACT

Transgenic mice (TG) were used to define mitochondrial oxidative stress and cardiomyopathy (CM) induced by zidovudine (AZT), an antiretroviral used to treat HIV/AIDS. Genetically engineered mice either depleted or overexpressed mitochondrial superoxide dismutase (SOD2(+/-) KOs and SOD2-OX, respectively) or expressed mitochondrially targeted catalase (mCAT). TGs and wild-type (WT) littermates were treated (oral AZT, 35 days). Cardiac mitochondrial H(2)O(2), aconitase activity, histology and ultrastructure were analyzed. Left ventricle (LV) mass and LV end-diastolic dimension were determined echocardiographically. AZT induced cardiac oxidative stress and LV dysfunction in WTs. Cardiac mitochondrial H(2)O(2) increased and aconitase was inactivated in SOD2(+/-) KOs, and cardiac dysfunction was worsened by AZT. Conversely, the cardiac function in SOD2-OX and mCAT hearts was protected. In SOD2-OX and mCAT TG hearts, mitochondrial H(2)O(2), LV mass and LV cavity volume resembled corresponding values from vehicle-treated WTs. AZT worsens cardiac dysfunction and increases mitochondrial H(2)O(2) in SOD2(+/-) KO. Conversely, both SOD2-OX and mCAT TGs prevent or attenuate AZT-induced cardiac oxidative stress and LV dysfunction. As dysfunctional changes are ameliorated by decreasing and worsened by increasing H(2)O(2) abundance, oxidative stress from H(2)O(2) is crucial pathogenetically in AZT-induced mitochondrial CM.


Subject(s)
Anti-HIV Agents/toxicity , Cardiomyopathies/chemically induced , Cardiomyopathies/prevention & control , Catalase/metabolism , Mitochondria, Heart/drug effects , Mitochondria, Heart/enzymology , Superoxide Dismutase/metabolism , Zidovudine/toxicity , Aconitate Hydratase/metabolism , Animals , Cardiomyopathies/genetics , Cardiomyopathies/metabolism , Catalase/genetics , Female , Gene Expression , Hydrogen Peroxide/metabolism , Male , Mice , Mice, Congenic , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microscopy, Electron, Transmission , Mitochondria, Heart/ultrastructure , Models, Cardiovascular , Myocardium/pathology , Oxidative Stress/drug effects , Phenotype , Superoxide Dismutase/deficiency , Superoxide Dismutase/genetics
5.
Lab Invest ; 89(5): 513-9, 2009 May.
Article in English | MEDLINE | ID: mdl-19274046

ABSTRACT

Tenofovir disoproxil fumarate (TDF) is an analog of adenosine monophosphate that inhibits HIV reverse transcriptase in HIV/AIDS. Despite its therapeutic success, renal tubular side effects are reported. The mechanisms and targets of tenofovir toxicity were determined using '2 x 2' factorial protocols, and HIV transgenic (TG) and wild-type (WT) littermate mice with or without TDF (5 weeks). A parallel study used didanosine (ddI) instead of TDF. At termination, heart, kidney, and liver samples were retrieved. Mitochondrial DNA (mtDNA) abundance, and histo- and ultrastructural pathology were analyzed. Laser-capture microdissection (LCM) was used to isolate renal proximal tubules for molecular analyses. Tenofovir increased mtDNA abundance in TG whole kidneys, but not in their hearts or livers. In contrast, ddI decreased mtDNA abundance in the livers of WTs and TGs, but had no effect on their hearts or kidneys. Histological analyses of kidneys showed no disruption of glomeruli or proximal tubules with TDF or ddI treatments. Ultrastructural changes in renal proximal tubules from TDF-treated TGs included an increased number and irregular shape of mitochondria with sparse fragmented cristae. LCM-captured renal proximal tubules from TGs showed decreased mtDNA abundance with tenofovir. The results indicate that tenofovir targets mitochondrial toxicity on the renal proximal tubule in an AIDS model.


Subject(s)
AIDS-Associated Nephropathy/chemically induced , Adenine/analogs & derivatives , Anti-HIV Agents/adverse effects , Kidney Tubules, Proximal/drug effects , Mitochondria/drug effects , Organophosphonates/adverse effects , AIDS-Associated Nephropathy/pathology , Adenine/adverse effects , Animals , DNA, Mitochondrial/metabolism , Didanosine/adverse effects , Female , HIV-1 , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/ultrastructure , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microdissection , Mitochondria/ultrastructure , Tenofovir , Urothelium/ultrastructure
6.
Lab Invest ; 89(2): 122-30, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19079325

ABSTRACT

Mitochondrial toxicity results from pyrimidine nucleoside reverse transcriptase inhibitors (NRTIs) for HIV/AIDS. In the heart, this can deplete mitochondrial (mt) DNA and cause cardiac dysfunction (eg, left ventricle hypertrophy, LVH). Four unique transgenic, cardiac-targeted overexpressors (TGs) were generated to determine their individual impact on native mitochondrial biogenesis and effects of NRTI administration on development of mitochondrial toxicity. TGs included cardiac-specific overexpression of native thymidine kinase 2 (TK2), two pathogenic TK2 mutants (H121N and I212N), and a mutant of mtDNA polymerase, pol-gamma (Y955C). Each was treated with antiretrovirals (AZT-HAART, 3 or 10 weeks, zidovudine (AZT) + lamivudine (3TC) + indinavir, or vehicle control). Parameters included left ventricle (LV) performance (echocardiography), LV mtDNA abundance (real-time PCR), and mitochondrial fine structure (electron microscopy, EM) as a function of duration of treatment and presence of TG. mtDNA abundance significantly decreased in Y955C TG, increased in TK2 native and I212N TGs, and was unchanged in H121N TGs at 10 weeks regardless of treatment. Y955C and I212N TGs exhibited LVH during growth irrespective of treatment. Y955C TGs exhibited cardiomyopathy (CM) at 3 and 10 weeks irrespective of treatment, whereas H121N and I212N TGs exhibited CM only after 10 weeks AZT-HAART. EM features were consistent with cardiac dysfunction. mtDNA abundance and cardiac functional changes were related to TG expression of mitochondrially related genes, mutations thereof, and NRTIs.


Subject(s)
Anti-HIV Agents/toxicity , DNA, Mitochondrial/metabolism , Mitochondria, Heart/metabolism , Myocytes, Cardiac/metabolism , Reverse Transcriptase Inhibitors/toxicity , Thymidine Kinase/metabolism , Animals , Antiretroviral Therapy, Highly Active , Cardiomyopathy, Dilated/chemically induced , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/pathology , Cell Line , DNA, Mitochondrial/analysis , Echocardiography , Female , Heart Ventricles/chemistry , Heart Ventricles/drug effects , Heart Ventricles/metabolism , Hypertrophy, Left Ventricular/chemically induced , Hypertrophy, Left Ventricular/diagnostic imaging , Hypertrophy, Left Ventricular/metabolism , Indinavir/toxicity , Lamivudine/toxicity , Male , Mice , Mice, Transgenic , Mitochondria, Heart/drug effects , Mitochondria, Heart/ultrastructure , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/ultrastructure , Phosphorylation , Thymidine Kinase/genetics , Zidovudine/toxicity
7.
Cardiovasc Toxicol ; 8(2): 57-69, 2008.
Article in English | MEDLINE | ID: mdl-18446447

ABSTRACT

Mitochondrial (mt) DNA biogenesis is critical to cardiac contractility. DNA polymerase gamma (Pol gamma) replicates mtDNA, whereas thymidine kinase 2 (TK2) monophosphorylates pyrimidines intramitochondrially. Point mutations in POLG and TK2 result in clinical diseases associated with mtDNA depletion and organ dysfunction. Pyrimidine analogs (NRTIs) inhibit Pol gamma and mtDNA replication. Cardiac "dominant negative" murine transgenes (TGs; Pol gamma Y955C, and TK2 H121N or I212N) defined the role of each in the heart. mtDNA abundance, histopathological features, histochemistry, mitochondrial protein abundance, morphometry, and echocardiography were determined for TGs in "2 x 2" studies with or without pyrimidine analogs. Cardiac mtDNA abundance decreased in Y955C TGs ( approximately 50%) but increased in H121N and I212N TGs (20-70%). Succinate dehydrogenase (SDH) increased in hearts of all mutants. Ultrastructural changes occurred in Y955C and H121N TGs. Histopathology demonstrated hypertrophy in H121N, LV dilation in I212N, and both hypertrophy and dilation in Y955C TGs. Antiretrovirals increased LV mass ( approximately 50%) for all three TGs which combined with dilation indicates cardiomyopathy. Taken together, these studies demonstrate three manifestations of cardiac dysfunction that depend on the nature of the specific mutation and antiretroviral treatment. Mutations in genes for mtDNA biogenesis increase risk for defective mtDNA replication, leading to LV hypertrophy.


Subject(s)
Anti-Retroviral Agents/toxicity , Cardiomyopathies/enzymology , DNA, Mitochondrial/metabolism , DNA-Directed DNA Polymerase/metabolism , Mitochondria, Heart/enzymology , Myocytes, Cardiac/enzymology , Thymidine Kinase/metabolism , Animals , Cardiomyopathies/diagnostic imaging , Cardiomyopathies/etiology , Cardiomyopathy, Dilated/enzymology , Cardiomyopathy, Dilated/etiology , DNA Polymerase gamma , DNA-Directed DNA Polymerase/genetics , Electron Transport Complex I/metabolism , Humans , Hypertrophy, Left Ventricular/enzymology , Hypertrophy, Left Ventricular/etiology , Mice , Mice, Transgenic , Mitochondria, Heart/drug effects , Mitochondria, Heart/ultrastructure , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/ultrastructure , Point Mutation , Succinate Dehydrogenase/metabolism , Thymidine Kinase/genetics , Ultrasonography
8.
Lab Invest ; 87(4): 326-35, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17310215

ABSTRACT

POLG is the human gene that encodes the catalytic subunit of DNA polymerase gamma (Pol gamma), the replicase for human mitochondrial DNA (mtDNA). A POLG Y955C point mutation causes human chronic progressive external ophthalmoplegia (CPEO), a mitochondrial disease with eye muscle weakness and mtDNA defects. Y955C POLG was targeted transgenically (TG) to the murine heart. Survival was determined in four TG (+/-) lines and wild-type (WT) littermates (-/-). Left ventricle (LV) performance (echocardiography and MRI), heart rate (electrocardiography), mtDNA abundance (real time PCR), oxidation of mtDNA (8-OHdG), histopathology and electron microscopy defined the phenotype. Cardiac targeted Y955C POLG yielded a molecular signature of CPEO in the heart with cardiomyopathy (CM), mitochondrial oxidative stress, and premature death. Increased LV cavity size and LV mass, bradycardia, decreased mtDNA, increased 8-OHdG, and cardiac histopathological and mitochondrial EM defects supported and defined the phenotype. This study underscores the pathogenetic role of human mutant POLG and its gene product in mtDNA depletion, mitochondrial oxidative stress, and CM as it relates to the genetic defect in CPEO. The transgenic model pathophysiologically links human mutant Pol gamma, mtDNA depletion, and mitochondrial oxidative stress to the mtDNA replication apparatus and to CM.


Subject(s)
Cardiomyopathies/pathology , DNA, Mitochondrial/metabolism , DNA-Directed DNA Polymerase/physiology , Oxidative Stress , 8-Hydroxy-2'-Deoxyguanosine , Animals , Cardiomyopathies/genetics , Cardiomyopathies/mortality , DNA Polymerase gamma , DNA-Directed DNA Polymerase/genetics , Deoxyguanosine/analogs & derivatives , Deoxyguanosine/metabolism , Heart Ventricles/pathology , Humans , Magnetic Resonance Imaging , Mice , Mice, Transgenic , Mitochondria, Heart/metabolism , Mitochondria, Heart/ultrastructure , Mutation , Myocardium/metabolism , Myocardium/pathology
9.
Am J Pathol ; 170(3): 865-74, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17322372

ABSTRACT

Mitochondrial toxicity limits nucleoside reverse transcriptase inhibitors (NRTIs) for acquired immune deficiency syndrome. NRTI triphosphates, the active moieties, inhibit human immunodeficiency virus reverse transcriptase and eukaryotic mitochondrial DNA polymerase pol-gamma. NRTI phosphorylation seems to correlate with mitochondrial toxicity, but experimental evidence is lacking. Transgenic mice (TGs) with cardiac overexpression of thymidine kinase isoforms (mitochondrial TK2 and cytoplasmic TK1) were used to study NRTI mitochondrial toxicity. Echocardiography and nuclear magnetic resonance imaging defined cardiac performance and structure. TK gene copy and enzyme activity, mitochondrial (mt) DNA and polypeptide abundance, succinate dehydrogenase and cytochrome oxidase histochemistry, and electron microscopy correlated with transgenesis, mitochondrial structure, and biogenesis. Antiretroviral combinations simulated therapy. Untreated hTK1 or TK2 TGs exhibited normal left ventricle mass. In TK2 TGs, cardiac TK2 gene copy doubled, activity increased 300-fold, and mtDNA abundance doubled. Abundance of the 17-kd subunit of complex I, succinate dehydrogenase histochemical activity, and cristae density increased. NRTIs increased left ventricle mass 20% in TK2 TGs. TK activity increased 3 logs in hTK1 TGs, but no cardiac phenotype resulted. NRTIs abrogated functional effects of transgenically increased TK2 activity but had no effect on TK2 mtDNA abundance. Thus, NRTI mitochondrial phosphorylation by TK2 is integral to clinical NRTI mitochondrial toxicity.


Subject(s)
Mitochondria/drug effects , Reverse Transcriptase Inhibitors/toxicity , Thymidine Kinase/drug effects , Thymidine Kinase/metabolism , Transgenes , Animals , DNA, Mitochondrial/drug effects , DNA, Mitochondrial/metabolism , Echocardiography , Humans , Immunoblotting , Immunohistochemistry , Isoenzymes/drug effects , Isoenzymes/metabolism , Magnetic Resonance Spectroscopy , Mice , Mice, Transgenic , Microscopy, Electron, Transmission , Mitochondria/metabolism , Myocardium/enzymology , Peptides/drug effects , Phosphorylation/drug effects , Reverse Transcriptase Polymerase Chain Reaction , Succinate Dehydrogenase/drug effects , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...