Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Arch Pathol Lab Med ; 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37852172

ABSTRACT

CONTEXT.­: The pathology of coal workers' pneumoconiosis (CWP) and its most severe form-progressive massive fibrosis (PMF)-in US coal miners has changed in recent years. Severe disease is occurring in younger miners and has been linked to an increase in silica dust exposure. OBJECTIVE.­: To update the description of the pathologic features of CWP in contemporary miners compared to historical miners. DESIGN.­: This study is a retrospective expert classification of lung tissue from 85 historical and contemporary coal miners with PMF. Significant pathologic features were scored by using a standardized instrument with consensus achieved for major findings, including newly defined categories of PMF as coal-type, mixed-type, and silica-type. RESULTS.­: Pathologic features associated with silica dust exposure, including silica-type PMF, mineral dust alveolar proteinosis (MDAP), and immature (early stage) silicotic nodules were increased in contemporary miners. Detailed descriptions of the pathology of contemporary CWP with illustrative figures are provided. CONCLUSIONS.­: Silica-related pathologies are more common in contemporary miners. Severe forms of CWP can be detected by subtyping PMF lesions (if present) or by identification of mature and immature silicotic nodules, coal mine dust-related alveolar proteinosis, and severe inflammation in coal miners' lungs. Silica-type PMF cases showed significantly higher levels of MDAP than either mixed- or coal-type PMF (P < .001). High profusion of birefringent silica/silicate particles was observed more frequently in cases with immature (early stage) silicotic nodules (P = .04). Severe inflammation was also significantly increased in contemporary miners (P = .03). Our findings underscore the urgent need to revise current exposure limits and monitoring of respirable crystalline silica in US coal mines.

2.
Occup Environ Med ; 80(8): 425-430, 2023 08.
Article in English | MEDLINE | ID: mdl-37295943

ABSTRACT

BACKGROUND: Pneumoconiosis among coal miners in the USA has been resurgent over the past two decades, despite modern dust controls and regulatory standards. Previously published studies have suggested that respirable crystalline silica (RCS) is a contributor to this disease resurgence. However, evidence has been primarily indirect, in the form of radiographic features. METHODS: We obtained lung tissue specimens and data from the National Coal Workers' Autopsy Study. We evaluated specimens for the presence of progressive massive fibrosis (PMF) and used histopathological classifications to type these specimens into coal-type, mixed-type and silica-type PMF. Rates of each were compared by birth cohort. Logistic regression was used to assess demographic and mining characteristics associated with silica-type PMF. RESULTS: Of 322 cases found to have PMF, study pathologists characterised 138 (43%) as coal-type, 129 (40%) as mixed-type and 55 (17%) as silica-type PMF. Among earlier birth cohorts, coal-type and mixed-type PMF were more common than silica-type PMF, but their rates declined in later birth cohorts. In contrast, the rate of silica-type PMF did not decline in cases from more recent birth cohorts. More recent year of birth was significantly associated with silica-type PMF. CONCLUSIONS: Our findings demonstrate a shift in PMF types among US coal miners, from a predominance of coal- and mixed-type PMF to a more commonly encountered silica-type PMF. These results are further evidence of the prominent role of RCS in the pathogenesis of pneumoconiosis among contemporary US coal miners.


Subject(s)
Coal Mining , Occupational Diseases , Pneumoconiosis , Humans , United States/epidemiology , Occupational Diseases/epidemiology , Occupational Diseases/etiology , Occupational Diseases/pathology , Silicon Dioxide/adverse effects , Dust , Coal/adverse effects , Fibrosis
3.
Semin Respir Crit Care Med ; 44(3): 327-339, 2023 06.
Article in English | MEDLINE | ID: mdl-36972614

ABSTRACT

Pneumoconioses represent the spectrum of lung diseases caused by inhalation of respirable particulate matter small enough (typically <5-µm diameter) to reach the terminal airways and alveoli. Pneumoconioses primarily occur in occupational settings where workers perform demanding and skilled manual labor including mining, construction, stone fabrication, farming, plumbing, electronics manufacturing, shipyards, and more. Most pneumoconioses develop after decades of exposure, though shorter latencies can occur from more intense particulate matter exposures. In this review, we summarize the industrial exposures, pathologic findings, and mineralogic features of various well-characterized pneumoconioses including silicosis, silicatosis, mixed-dust pneumoconiosis, coal workers' pneumoconiosis, asbestosis, chronic beryllium disease, aluminosis, hard metal pneumoconiosis, and some less severe pneumoconioses. We also review a general framework for the diagnostic work-up of pneumoconioses for pulmonologists including obtaining a detailed occupational and environmental exposure history. Many pneumoconioses are irreversible and develop due to excessive cumulative respirable dust inhalation. Accurate diagnosis permits interventions to minimize ongoing fibrogenic dust exposure. A consistent occupational exposure history coupled with typical chest imaging findings is usually sufficient to make a clinical diagnosis without the need for tissue sampling. Lung biopsy may be required when exposure history, imaging, and testing are inconsistent, there are unusual or new exposures, or there is a need to obtain tissue for another indication such as suspected malignancy. Close collaboration and information-sharing with the pathologist prior to biopsy is of great importance for diagnosis, as many occupational lung diseases are missed due to insufficient communication. The pathologist has a broad range of analytic techniques including bright-field microscopy, polarized light microscopy, and special histologic stains that may confirm the diagnosis. Advanced techniques for particle characterization such as scanning electron microscopy/energy dispersive spectroscopy may be available in some centers.


Subject(s)
Air Pollutants , Occupational Exposure , Pneumoconiosis , Silicosis , Humans , Pneumoconiosis/diagnosis , Pneumoconiosis/etiology , Pneumoconiosis/pathology , Silicosis/complications , Silicosis/pathology , Lung/pathology , Dust , Occupational Exposure/adverse effects
4.
J Occup Environ Med ; 65(4): 315-320, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36730599

ABSTRACT

OBJECTIVE: To characterize differences in mining jobs and tenure between contemporary (born 1930+, working primarily with modern mining technologies) and historic coal miners with progressive massive fibrosis (PMF). METHODS: We classified jobs as designated occupations (DOs) and non-DOs based on regulatory sampling requirements. Demographic, occupational characteristics, and histopathological PMF type were compared between groups. RESULTS: Contemporary miners ( n = 33) had significantly shorter mean total (30.4 years vs 37.1 years, P = 0.0006) and underground (28.8 years vs 35.8 years, P = 0.001) mining tenure compared with historic miners ( n = 289). Silica-type PMF was significantly more common among miners in non-DOs (30.1% vs 15.8%, P = 0.03) and contemporary miners (58.1% vs 15.2%, P < 0.0001). CONCLUSIONS: Primary jobs changed over time with the introduction of modern mining technologies and likely changed exposures for workers. Elevated crystalline silica exposures are likely in non-DOs and require attention.


Subject(s)
Coal Mining , Occupational Exposure , Pneumoconiosis , Humans , Occupations , Silicon Dioxide , Fibrosis , Coal , Occupational Exposure/adverse effects
5.
Am J Respir Crit Care Med ; 207(4): 452-460, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36399661

ABSTRACT

Rationale: Ventilatory defects in asthma are heterogeneous and may represent the distribution of airway smooth muscle (ASM) remodeling. Objectives: To determine the distribution of ASM remodeling in mild-severe asthma. Methods: The ASM area was measured in nine airway levels in three bronchial pathways in cases of nonfatal (n = 30) and fatal asthma (n = 20) and compared with control cases without asthma (n = 30). Correlations of ASM area within and between bronchial pathways were calculated. Asthma cases with 12 large and 12 small airways available (n = 42) were classified on the basis of the presence or absence of ASM remodeling (more than two SD of mean ASM area of control cases, n = 86) in the large or small airway or both. Measurements and Main Results: ASM remodeling varied widely within and between cases of nonfatal asthma and was more widespread and confluent and more marked in fatal cases. There were weak correlations of ASM between levels within the same or separate bronchial pathways; however, predictable patterns of remodeling were not observed. Using mean data, 44% of all asthma cases were classified as having no ASM remodeling in either the large or small airway despite a three- to 10-fold increase in the number of airways with ASM remodeling and 81% of asthma cases having ASM remodeling in at least one large and small airway. Conclusions: ASM remodeling is related to asthma severity but is heterogeneous within and between individuals and may contribute to the heterogeneous functional defects observed in asthma. These findings support the need for patient-specific targeting of ASM remodeling.


Subject(s)
Asthma , Humans , Bronchi/metabolism , Muscle, Smooth , Thorax/metabolism , Airway Remodeling
6.
Respir Physiol Neurobiol ; 301: 103884, 2022 07.
Article in English | MEDLINE | ID: mdl-35301143

ABSTRACT

Clinical visualization and quantification of the amount and distribution of airway smooth muscle (ASM) in the lungs of individuals with asthma has major implications for our understanding of airway wall remodeling as well as treatments targeted at the ASM. This paper theoretically investigates the feasibility of quantifying airway wall thickness (focusing on the ASM) throughout the lung in vivo by means of bronchoscopic polarization-sensitive optical coherence tomography (PS-OCT). Using extensive human biobank data from subjects with and without asthma in conjunction with a mathematical model of airway compliance, we define constraints that airways of various sizes pose to any endoscopic imaging technique and how this is impacted by physiologically relevant processes such as constriction, inflation and deflation. We identify critical PS-OCT system parameters and pinpoint parts of the airway tree that are conducive to successful quantification of ASM. We further quantify the impact of breathing and ASM contraction on the measurement error and recommend strategies for standardization and normalization.


Subject(s)
Asthma , Muscle, Smooth , Airway Remodeling , Asthma/diagnostic imaging , Humans , Lung/diagnostic imaging , Muscle Contraction/physiology , Muscle, Smooth/diagnostic imaging
7.
Ann Am Thorac Soc ; 19(9): 1469-1478, 2022 09.
Article in English | MEDLINE | ID: mdl-35353671

ABSTRACT

Rationale: The reasons for resurgent coal workers' pneumoconiosis and its most severe forms, rapidly progressive pneumoconiosis and progressive massive fibrosis (PMF), in the United States are not yet fully understood. Objectives: To compare the pathologic and mineralogic features of contemporary coal miners with severe pneumoconiosis with those of their historical counterparts. Methods: Lung pathology specimens from 85 coal miners with PMF were included for evaluation and analysis. We compared the proportion of cases with pathologic and mineralogic findings in miners born between 1910 and 1930 (historical) with those in miners born in or after 1930 (contemporary). Results: We found a significantly higher proportion of silica-type PMF (57% vs. 18%; P < 0.001) among contemporary miners compared with their historical counterparts. Mineral dust alveolar proteinosis was also more common in contemporary miners compared with their historical counterparts (70% vs. 37%; P < 0.01). In situ mineralogic analysis showed that the percentage (26.1% vs. 17.8%; P < 0.01) and concentration (47.3 × 108 vs. 25.8 × 108 particles/cm3; P = 0.036) of silica particles were significantly greater in specimens from contemporary miners compared with their historical counterparts. The concentration of silica particles was significantly greater when silica-type PMF, mineral dust alveolar proteinosis, silicotic nodules, or immature silicotic nodules were present (P < 0.05). Conclusions: Exposure to respirable crystalline silica appears causal in the unexpected surge of severe disease in contemporary miners. Our findings underscore the importance of controlling workplace silica exposure to prevent the disabling and untreatable adverse health effects afflicting U.S. coal miners.


Subject(s)
Anthracosis , Coal Mining , Occupational Exposure , Pneumoconiosis , Pulmonary Alveolar Proteinosis , Anthracosis/epidemiology , Coal , Dust , Humans , Occupational Exposure/adverse effects , Pneumoconiosis/epidemiology , Prevalence , Silicon Dioxide/adverse effects , United States/epidemiology
8.
Occup Environ Med ; 79(5): 319-325, 2022 05.
Article in English | MEDLINE | ID: mdl-34880046

ABSTRACT

OBJECTIVES: In 2010, 29 coal miners died due to an explosion at the Upper Big Branch (UBB) mine in West Virginia, USA. Autopsy examinations of 24 individuals with evaluable lung tissue identified 17 considered to have coal workers' pneumoconiosis (CWP). The objectives of this study were to characterise histopathological findings of lung tissue from a sample of UBB fatalities and better understand the respirable dust concentrations experienced by these miners at UBB relative to other US coal mines. METHODS: Occupational pulmonary pathologists evaluated lung tissue specimens from UBB fatalities for the presence of features of pneumoconiosis. Respirable dust and quartz samples submitted for regulatory compliance from all US underground coal mines prior to the disaster were analysed. RESULTS: Families of seven UBB fatalities provided consent for the study. Histopathologic evidence of CWP was found in all seven cases. For the USA, central Appalachia and UBB, compliance dust samples showed the geometric mean for respirable dust was 0.468, 0.420 and 0.518 mg/m3, respectively, and respirable quartz concentrations were 0.030, 0.038 and 0.061 mg/m3. After adjusting for quartz concentrations, UBB exceeded the US permissible exposure limit (PEL) for respirable dust in 28% of samples. CONCLUSIONS: Although higher than average respirable dust and quartz levels were observed at UBB, over 200 US underground coal mines had higher dust concentrations than UBB and over 100 exceeded the PEL more frequently. Together with lung histopathological findings among UBB fatalities, these data suggest exposures leading to CWP in the USA are more prevalent than previously understood.


Subject(s)
Anthracosis , Coal Mining , Lung Diseases , Occupational Exposure , Pneumoconiosis , Coal/adverse effects , Coal/analysis , Dust/analysis , Humans , Lung , Occupational Exposure/adverse effects , Occupational Exposure/analysis , Quartz/adverse effects , Quartz/analysis
10.
Am J Respir Crit Care Med ; 202(12): 1678-1688, 2020 12 15.
Article in English | MEDLINE | ID: mdl-32673495

ABSTRACT

Rationale: Workers' exposure to metalworking fluid (MWF) has been associated with respiratory disease.Objectives: As part of a public health investigation of a manufacturing facility, we performed a cross-sectional study using paired environmental and human sampling to evaluate the cross-pollination of microbes between the environment and the host and possible effects on lung pathology present among workers.Methods: Workplace environmental microbiota were evaluated in air and MWF samples. Human microbiota were evaluated in lung tissue samples from workers with respiratory symptoms found to have lymphocytic bronchiolitis and alveolar ductitis with B-cell follicles and emphysema, in lung tissue samples from control subjects, and in skin, nasal, and oral samples from 302 workers from different areas of the facility. In vitro effects of MWF exposure on murine B cells were assessed.Measurements and Main Results: An increased similarity of microbial composition was found between MWF samples and lung tissue samples of case workers compared with control subjects. Among workers in different locations within the facility, those that worked in the machine shop area had skin, nasal, and oral microbiota more closely related to the microbiota present in the MWF samples. Lung samples from four index cases and skin and nasal samples from workers in the machine shop area were enriched with Pseudomonas, the dominant taxa in MWF. Exposure to used MWF stimulated murine B-cell proliferation in vitro, a hallmark cell subtype found in the pathology of index cases.Conclusions: Evaluation of a manufacturing facility with a cluster of workers with respiratory disease supports cross-pollination of microbes from MWF to humans and suggests the potential for exposure to these microbes to be a health hazard.


Subject(s)
Aerosols/adverse effects , Air Pollutants, Occupational/adverse effects , Manufacturing and Industrial Facilities , Microbiota , Pseudomonas pseudoalcaligenes , Respiration Disorders/physiopathology , Adult , Air Microbiology , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Respiration Disorders/etiology , United States
11.
Respir Physiol Neurobiol ; 279: 103469, 2020 08.
Article in English | MEDLINE | ID: mdl-32473215

ABSTRACT

Airway remodelling is a cardinal feature of asthma in which airways undergo structural changes - in particular, increased airway smooth muscle mass and total airway wall area. Remodelling has long been thought to have functional consequences in asthma due to geometric effects that can increase airway narrowing and luminal occlusion. Prior studies have examined the distribution of remodelling between and within patients, but none have yet considered the possibility for spatial correlations in airway remodelling. That is, is remodelling clustered locally, or interrelated along proximal and distal locations of the bronchial tree? In view of recent interest regarding airway remodelling produced by mechanical stimuli, we developed a mathematical model to examine whether spatial correlations in airway remodelling could arise due to cycles of bronchoconstriction and mechanotransduction. Further, we compared modelling predictions to the spatial distribution of airway remodelling in lungs from subjects with and without asthma. Results indicate that spatial correlations in airway remodelling do exist in vivo, and cycles of bronchoconstriction and mechanotransduction are one plausible mechanism for their origin. These findings offer insights into the evolution of airway remodelling in asthma, which may inform strategies for treatment and prevention.


Subject(s)
Airway Remodeling , Asthma/pathology , Bronchoconstriction , Mechanotransduction, Cellular , Muscle, Smooth/pathology , Adolescent , Adult , Asthma/physiopathology , Case-Control Studies , Child , Child, Preschool , Female , Humans , Male , Middle Aged , Models, Theoretical , Spatial Analysis , Young Adult
13.
Article in English | MEDLINE | ID: mdl-31781272

ABSTRACT

The purpose of this study was to determine the efficacy of a Peruvian botanical formulation for treating disorders of hepatic function and gastric mucosal integrity. The formulation A4+ (Sabell Corporation) contains extracts of Curcuma longa rhizome, Cordia lutea flower, and Annona muricata leaf. Individually these plants have been used as traditional remedies for liver disease. We report the efficacy of A4+ and its components using a variety of in vitro and in vivo disease models. The methods used included tests for antioxidant, anti-inflammatory, and antiviral activity as well as mouse models of liver disease, including Concanavalin A-induced immune-mediated hepatitis and a bile duct ligation model for evaluating sickness behaviour associated with liver disease. Rat models were used to evaluate the gastric mucosal protective property of A4+ following indomethacin challenge and to evaluate its anti-inflammatory action in an "air pouch" model. In all tests, A4+ proved to be more effective than placebo. A4+ was antioxidant and anti-inflammatory and diminished Hepatitis C virus replication in vitro. In animal models, A4+ was shown to protect the liver from immune-mediated hepatitis, improve behavioural function in animals with late stage liver disease, and protect the rat gastric mucosa from ulceration following NSAID exposure. We conclude that A4+ ameliorated many aspects of liver injury, inhibited hepatitis C virus replication, and protected the gastric mucosa from NSAIDs. These varied beneficial properties appear to result from positive interactions between the three constituent herbs.

14.
Eur Respir J ; 54(6)2019 12.
Article in English | MEDLINE | ID: mdl-31624112

ABSTRACT

Epidemiological studies report that overweight or obese asthmatic subjects have more severe disease than those of a healthy weight. We postulated that accumulation of adipose tissue within the airway wall may occur in overweight patients and contribute to airway pathology. Our aim was to determine the relationship between adipose tissue within the airway wall and body mass index (BMI) in individuals with and without asthma.Transverse airway sections were sampled in a stratified manner from post mortem lungs of control subjects (n=15) and cases of nonfatal (n=21) and fatal (n=16) asthma. The relationship between airway adipose tissue, remodelling and inflammation was assessed. The areas of the airway wall and adipose tissue were estimated by point count and expressed as area per mm of basement membrane perimeter (Pbm). The number of eosinophils and neutrophils were expressed as area densities.BMI ranged from 15 to 45 kg·m-2 and was greater in nonfatal asthma cases (p<0.05). Adipose tissue was identified in the outer wall of large airways (Pbm >6 mm), but was rarely seen in small airways (Pbm <6 mm). Adipose tissue area correlated positively with eosinophils and neutrophils in fatal asthma (Pbm >12 mm, p<0.01), and with neutrophils in control subjects (Pbm >6 mm, p=0.04).These data show that adipose tissue is present within the airway wall and is related to BMI, wall thickness and the number of inflammatory cells. Therefore, the accumulation of airway adipose tissue in overweight individuals may contribute to airway pathophysiology.


Subject(s)
Adipose Tissue/pathology , Asthma/pathology , Basement Membrane/pathology , Body Mass Index , Bronchi/pathology , Adult , Asthma/physiopathology , Case-Control Studies , Eosinophils/pathology , Female , Humans , Inflammation/pathology , Leukocyte Count , Linear Models , Male , Middle Aged , Neutrophils/pathology , Obesity/complications , Overweight/complications , Young Adult
15.
Am J Ind Med ; 62(11): 927-937, 2019 11.
Article in English | MEDLINE | ID: mdl-31461179

ABSTRACT

BACKGROUND: A cluster of severe lung disease occurred at a manufacturing facility making industrial machines. We aimed to describe disease features and workplace exposures. METHODS: Clinical, functional, radiologic, and histopathologic features were characterized. Airborne concentrations of thoracic aerosol, metalworking fluid, endotoxin, metals, and volatile organic compounds were measured. Facility airflow was assessed using tracer gas. Process fluids were examined using culture, polymerase chain reaction, and 16S ribosomal RNA sequencing. RESULTS: Five previously healthy male never-smokers, ages 27 to 50, developed chest symptoms from 1995 to 2012 while working in the facility's production areas. Patients had an insidious onset of cough, wheeze, and exertional dyspnea; airflow obstruction (mean FEV1 = 44% predicted) and reduced diffusing capacity (mean = 53% predicted); and radiologic centrilobular emphysema. Lung tissue demonstrated a unique pattern of bronchiolitis and alveolar ductitis with B-cell follicles lacking germinal centers, and significant emphysema for never-smokers. All had chronic dyspnea, three had a progressive functional decline, and one underwent lung transplantation. Patients reported no unusual nonoccupational exposures. No cases were identified among nonproduction workers or in the community. Endotoxin concentrations were elevated in two air samples; otherwise, exposures were below occupational limits. Air flowed from areas where machining occurred to other production areas. Metalworking fluid primarily grew Pseudomonas pseudoalcaligenes and lacked mycobacterial DNA, but 16S analysis revealed more complex bacterial communities. CONCLUSION: This cluster indicates a previously unrecognized occupational lung disease of yet uncertain etiology that should be considered in manufacturing workers (particularly never-smokers) with airflow obstruction and centrilobular emphysema. Investigation of additional cases in other settings could clarify the cause and guide prevention.


Subject(s)
Bronchiolitis/etiology , Lung/pathology , Manufacturing Industry , Occupational Diseases/etiology , Occupational Exposure/adverse effects , Pulmonary Emphysema/etiology , Adult , Air Pollutants, Occupational/adverse effects , Air Pollutants, Occupational/analysis , Endotoxins/analysis , Humans , Male , Manufacturing and Industrial Facilities , Middle Aged , Occupational Exposure/analysis , Pulmonary Alveoli/pathology , Young Adult
16.
J Appl Physiol (1985) ; 126(3): 599-606, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30676870

ABSTRACT

Bronchial thermoplasty is a recent treatment for asthma in which ablative thermal energy is delivered to specific large airways according to clinical guidelines. Therefore, current practice is effectively "blind," as it is not informed by patient-specific data. The present study seeks to establish whether a patient-specific approach based on structural or functional patient data can improve outcomes and/or reduce the number of procedures required for clinical efficacy. We employed a combination of extensive human lung specimens and novel computational methods to predict bronchial thermoplasty outcomes guided by structural or functional data compared with current clinical practice. Response to bronchial thermoplasty was determined from changes in airway responses to strong bronchoconstrictor simulations and flow heterogeneity after one or three simulated thermoplasty procedures. Structure-guided treatment showed significant improvement over current unguided clinical practice, with a single session of structure-guided treatment producing improvements comparable with three sessions of unguided treatment. In comparison, function-guided treatment did not produce a significant improvement over current practice. Structure-guided targeting of bronchial thermoplasty is a promising avenue for improving therapy and reinforces the need for advanced imaging technologies. The functional imaging-guided approach is predicted to be less effective presently, and we make recommendations on how this approach could be improved. NEW & NOTEWORTHY Bronchial thermoplasty is a recent treatment for asthma in which thermal energy is delivered via bronchoscope to specific airways in an effort to directly target airway smooth muscle. Current practice involves the treatment of a standard set of airways, unguided by patient-specific data. We consider the potential for guided treatments, either by functional or structural data from the lung, and show that treatment guided by structural data has the potential to improve clinical practice.


Subject(s)
Bronchi/physiopathology , Bronchial Thermoplasty/methods , Muscle, Smooth/physiopathology , Asthma/drug therapy , Asthma/physiopathology , Bronchoconstrictor Agents/pharmacology , Humans , Muscle, Smooth/drug effects , Treatment Outcome
17.
Nat Commun ; 9(1): 4030, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30279412

ABSTRACT

Asthma accounts for 380,000 deaths a year. Carotid body denervation has been shown to have a profound effect on airway hyper-responsiveness in animal models but a mechanistic explanation is lacking. Here we demonstrate, using a rat model of asthma (OVA-sensitized), that carotid body activation during airborne allergic provocation is caused by systemic release of lysophosphatidic acid (LPA). Carotid body activation by LPA involves TRPV1 and LPA-specific receptors, and induces parasympathetic (vagal) activity. We demonstrate that this activation is sufficient to cause acute bronchoconstriction. Moreover, we show that prophylactic administration of TRPV1 (AMG9810) and LPA (BrP-LPA) receptor antagonists prevents bradykinin-induced asthmatic bronchoconstriction and, if administered following allergen exposure, reduces the associated respiratory distress. Our discovery provides mechanistic insight into the critical roles of carotid body LPA receptors in allergen-induced respiratory distress and suggests alternate treatment options for asthma.


Subject(s)
Acrylamides/therapeutic use , Asthma/prevention & control , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Carotid Body/metabolism , Lysophospholipids/therapeutic use , Receptors, Lysophosphatidic Acid/metabolism , TRPV Cation Channels/metabolism , Acrylamides/pharmacology , Animals , Asthma/etiology , Asthma/metabolism , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Disease Models, Animal , Drug Evaluation, Preclinical , Lysophospholipids/pharmacology , Male , Rats, Inbred BN , Rats, Sprague-Dawley , Receptors, Lysophosphatidic Acid/antagonists & inhibitors , TRPV Cation Channels/antagonists & inhibitors
18.
J Appl Physiol (1985) ; 125(4): 1090-1096, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30024335

ABSTRACT

In asthma, it is unclear if the airway smooth muscle cells proliferate more or are increased at the onset of asthma and remain stable. This study aimed to compare smooth muscle cell proliferation in individuals with and without asthma and correlate proliferation rates with cell size and number and with granulocytic airway inflammation. Postmortem airway sections were labeled with proliferating cell nuclear antigen (PCNA) and percent positive muscle cells calculated. On the same sections, smooth muscle cell size and number and the number of eosinophils and neutrophils were estimated and compared in cases of nonfatal ( n = 15) and fatal ( n = 15) asthma and control subjects ( n = 15). The %PCNA+ muscle cells was not significantly different in fatal (29.4 ± 7.7%, mean ± SD), nonfatal asthma (28.6 ± 8.3%), or control subjects (24.6 ± 6.7%) and not related to mean muscle cell size ( r = 0.09), number ( r = 0.36), thickness of the muscle layer ( r = 0.05), or eosinophil numbers ( r = 0.04) in the asthma cases. These data support the hypothesis that in asthma the increased thickness of the smooth muscle layer may be present before or at the onset of asthma and independent of concurrent granulocytic inflammation or exacerbation. NEW & NOTEWORTHY There is debate regarding the origins of the increased airway smooth muscle in asthma. It may be independent of inflammation or arise as a proliferative response to inflammation. The present study found no increase in the proportion of proliferating smooth muscle cells in asthma and no relation of proliferation to numbers of airway smooth muscle cells or inflammation. These results support a stable increase in smooth muscle in asthma that is independent of airway inflammation.


Subject(s)
Asthma/physiopathology , Bronchi/physiopathology , Muscle, Smooth/physiopathology , Myocytes, Smooth Muscle/physiology , Adolescent , Adult , Asthma/immunology , Asthma/pathology , Bronchi/pathology , Case-Control Studies , Cell Proliferation , Female , Humans , Inflammation , Male , Young Adult
19.
Trials ; 19(1): 321, 2018 Jun 18.
Article in English | MEDLINE | ID: mdl-29914544

ABSTRACT

BACKGROUND: This study evaluates a novel bronchodilator, S1226, for its efficacy in reversing allergen-induced bronchoconstriction in subjects with mild, allergic asthma. S1226 is a new class of bronchodilator that is an aerosol/vapor/gas mixture combining pharmacological and biophysical principles for a novel mode of action. It contains a potent bronchodilator gas (carbon dioxide or CO2) and nebulized perflubron (a synthetic surfactant possessing mucolytic properties). It has demonstrated rapid reversal of allergen-induced bronchoconstriction in an ovine study model. METHODS: This was a phase IIa proof-of-concept, placebo-controlled, randomized, double-blind, crossover single-dose clinical trial to evaluate the safety, tolerability, and efficacy of S1226 (8% CO2) administered by nebulization following an allergen-induced early asthmatic response in 12 subjects with mild, allergic asthma. Primary safety endpoints were adverse events, vital signs, pulse oximetry, and spirometry. Efficacy endpoints included bronchodilator response (measured as the forced expiratory volume in 1 s or FEV1) over time, the area under the curve of FEV1 for the early asthmatic response over time, and achievement of responder status, defined as a 12% improvement after the allergen challenge. RESULTS: No significant safety issues were observed. All adverse events were non-serious, mild, and transient. There was a statistically significant decrease in peripheral blood oxygenation levels over time in the placebo group following allergen inhalation, whereas blood oxygenation was maintained at normal levels in the S1226-treated subjects (P = 0.028). This effect was greatest 5 min after start of treatment (P < 0.001). The recovery rate was faster but not significantly so (P = 0.272) for S1226 compared to the placebo at earlier time points (5, 10, and 15 min), as assessed by ≥12% reversal of FEV1. The recovery of FEV1 over time was significantly greater (P = 0.04) with S1226 compared to the placebo. CONCLUSIONS: S1226 was safe, tolerated well, and provided bronchodilation and improved blood oxygenation in subjects with mild atopic asthma following allergen-induced bronchoconstriction. Additional studies to optimize the therapeutic response are indicated. TRIAL REGISTRATION: ClinicalTrials.gov, NCT02334553 . Registered on 12 November 2014.


Subject(s)
Asthma/drug therapy , Bronchoconstriction/drug effects , Bronchodilator Agents/administration & dosage , Carbon Dioxide/administration & dosage , Expectorants/administration & dosage , Fluorocarbons/administration & dosage , Lung/drug effects , Acute Disease , Administration, Inhalation , Adolescent , Adult , Alberta , Asthma/blood , Asthma/diagnosis , Asthma/physiopathology , Bronchodilator Agents/adverse effects , Carbon Dioxide/adverse effects , Cross-Over Studies , Double-Blind Method , Expectorants/adverse effects , Female , Fluorocarbons/adverse effects , Forced Expiratory Volume , Humans , Hydrocarbons, Brominated , Lung/physiopathology , Male , Oxygen/blood , Proof of Concept Study , Time Factors , Treatment Outcome , Young Adult
20.
Respirology ; 23(12): 1138-1145, 2018 12.
Article in English | MEDLINE | ID: mdl-29943875

ABSTRACT

BACKGROUND AND OBJECTIVE: The pathology of asthma is characterized by airway inflammation (granulocytic (GA) or paucigranulocytic (PGA)) and remodelling of airway structures. However, the relationship between inflammatory phenotypes and remodelling is unclear. We hypothesized that some features of airway remodelling are dependent on granulocytic airway inflammation while others are not. METHODS: Post-mortem airway sections from control subjects (n = 48) and cases of asthma with (n = 51) or without (n = 29) granulocytic inflammation in the inner airway wall were studied. The thickness of the airway smooth muscle (ASM) layer, basement membrane and inner and outer airway walls, the size and number of ASM cells, the volume fraction of extracellular matrix within the ASM layer, ASM shortening and luminal mucus were estimated. Airway dimensions were compared between the three subject groups. RESULTS: In cases of PGA, only the thickness of the ASM layer and basement membrane was increased compared with control subjects. In cases of GA, not only the ASM and basement membrane were increased in thickness, but there was also increased inner and outer airway wall thickness and increased narrowing of the airway lumen due to ASM shortening and mucus obstruction, compared with control subjects. Granulocytic inflammation was observed more often in cases of fatal asthma. CONCLUSION: These findings suggest that inner and outer wall thickening coexists with inflammation, whereas thickening of the ASM layer and basement membrane may be present even in the absence of inflammation. Remodelling of the ASM layer and basement membrane may therefore be less susceptible to anti-inflammatory therapy.


Subject(s)
Asthma , Respiratory System , Adult , Airway Remodeling/immunology , Asthma/immunology , Asthma/pathology , Autopsy , Basement Membrane/pathology , Female , Humans , Inflammation/pathology , Male , Respiratory System/immunology , Respiratory System/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...