Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Artif Intell Med ; 112: 102005, 2021 02.
Article in English | MEDLINE | ID: mdl-33581825

ABSTRACT

Electromyogram (EMG) signals have had a great impact on many applications, including prosthetic or rehabilitation devices, human-machine interactions, clinical and biomedical areas. In recent years, EMG signals have been used as a popular tool to generate device control commands for rehabilitation equipment, such as robotic prostheses. This intention of this study was to design an EMG signal-based expert model for hand-grasp classification that could enhance prosthetic hand movements for people with disabilities. The study, thus, aimed to introduce an innovative framework for recognising hand movements using EMG signals. The proposed framework consists of logarithmic spectrogram-based graph signal (LSGS), AdaBoost k-means (AB-k-means) and an ensemble of feature selection (FS) techniques. First, the LSGS model is applied to analyse and extract the desirable features from EMG signals. Then, to assist in selecting the most influential features, an ensemble FS is added to the design. Finally, in the classification phase, a novel classification model, named AB-k-means, is developed to classify the selected EMG features into different hand grasps. The proposed hybrid model, LSGS-based scheme is evaluated with a publicly available EMG hand movement dataset from the UCI repository. Using the same dataset, the LSGS-AB-k-means design model is also benchmarked with several classifications including the state-of-the-art algorithms. The results demonstrate that the proposed model achieves a high classification rate and demonstrates superior results compared to several previous research works. This study, therefore, establishes that the proposed model can accurately classify EMG hand grasps and can be implemented as a control unit with low cost and a high classification rate.


Subject(s)
Hand Strength , Hand , Algorithms , Electromyography , Humans , Movement
2.
Diagnostics (Basel) ; 12(1)2021 Dec 29.
Article in English | MEDLINE | ID: mdl-35054242

ABSTRACT

Experts usually inspect electroencephalogram (EEG) recordings page-by-page in order to identify epileptic seizures, which leads to heavy workloads and is time consuming. However, the efficient extraction and effective selection of informative EEG features is crucial in assisting clinicians to diagnose epilepsy accurately. In this paper, a determinant of covariance matrix (Cov-Det) model is suggested for reducing EEG dimensionality. First, EEG signals are segmented into intervals using a sliding window technique. Then, Cov-Det is applied to each interval. To construct a features vector, a set of statistical features are extracted from each interval. To eliminate redundant features, the Kolmogorov-Smirnov (KST) and Mann-Whitney U (MWUT) tests are integrated, the extracted features ranked based on KST and MWUT metrics, and arithmetic operators are adopted to construe the most pertinent classified features for each pair in the EEG signal group. The selected features are then fed into the proposed AdaBoost Back-Propagation neural network (AB_BP_NN) to effectively classify EEG signals into seizure and free seizure segments. Finally, the AB_BP_NN is compared with several classical machine learning techniques; the results demonstrate that the proposed mode of AB_BP_NN provides insignificant false positive rates, simpler design, and robustness in classifying epileptic signals. Two datasets, the Bern-Barcelona and Bonn datasets, are used for performance evaluation. The proposed technique achieved an average accuracy of 100% and 98.86%, respectively, for the Bern-Barcelona and Bonn datasets, which is considered a noteworthy improvement compared to the current state-of-the-art methods.

3.
Front Neuroinform ; 15: 808339, 2021.
Article in English | MEDLINE | ID: mdl-35185506

ABSTRACT

Identification of alcoholism is clinically important because of the way it affects the operation of the brain. Alcoholics are more vulnerable to health issues, such as immune disorders, high blood pressure, brain anomalies, and heart problems. These health issues are also a significant cost to national health systems. To help health professionals to diagnose the disease with a high rate of accuracy, there is an urgent need to create accurate and automated diagnosis systems capable of classifying human bio-signals. In this study, an automatic system, denoted as (CT-BS- Cov-Eig based FOA-F-SVM), has been proposed to detect the prevalence and health effects of alcoholism from multichannel electroencephalogram (EEG) signals. The EEG signals are segmented into small intervals, with each segment passed to a clustering technique-based bootstrap (CT-BS) for the selection of modeling samples. A covariance matrix method with its eigenvalues (Cov-Eig) is integrated with the CT-BS system and applied for useful feature extraction related to alcoholism. To select the most relevant features, a nonparametric approach is adopted, and to classify the extracted features, a radius-margin-based support vector machine (F-SVM) with a fruit fly optimization algorithm (FOA), (i.e., FOA-F-SVM) is utilized. To assess the performance of the proposed CT-BS model, different types of evaluation methods are employed, and the proposed model is compared with the state-of-the-art models to benchmark the overall effectiveness of the newly designed system for EEG signals. The results in this study show that the proposed CT-BS model is more effective than the other commonly used methods and yields a high accuracy rate of 99%. In comparison with the state-of-the-art algorithms tested on identical databases describing the capability of the newly proposed FOA-F-SVM method, the study ascertains the proposed model as a promising medical diagnostic tool with potential implementation in automated alcoholism detection systems used by clinicians and other health practitioners. The proposed model, adopted as an expert system where EEG data could be classified through advanced pattern recognition techniques, can assist neurologists and other health professionals in the accurate and reliable diagnosis and treatment decisions related to alcoholism.

4.
Med J Aust ; 190(4): 206-7, 2009 Feb 16.
Article in English | MEDLINE | ID: mdl-19220188

ABSTRACT

Crikey is a daily electronic bulletin aimed at providing independent news. It was established in 2000. In 2007, journalists and public health advocates collaborated with Crikey to initiate an innovative health reporting project, the Crikey Health and Medical Panel (CHAMP). CHAMP members contribute articles and news tips to Crikey, broadening Crikey's scope of public health coverage. CHAMP continues to evolve, and has expanded to include a freely accessible online health forum, Croakey. CHAMP was established to enhance public debate about health, to encourage public health advocates to engage in debate, and to help the media to identify public health advocates and issues as sources for articles.


Subject(s)
Cooperative Behavior , Health Education/organization & administration , Information Dissemination , Mass Media , Public Health/education , Australia , Health Policy , Humans , Information Dissemination/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...