Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 3848, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38360933

ABSTRACT

In the Americas, the fall armyworm (Spodoptera frugiperda) exists in two genetically distinct strains, the corn (C) and rice (R) strains. Despite their names, these strains are not associated with host plant preferences but have been shown to vary in pheromone composition and male responses. Recently, S. frugiperda was detected in Africa as an invasive species, but knowledge about variation in strain types, pheromone composition and inter-strain mating of populations of the pest in the continent has not been fully examined. Therefore, this study aimed to investigate variations, if any in the pheromone composition of female moths, male moth responses, and mating between C and R mitotypes of S. frugiperda populations in Kenya, as well as their geographic distribution. Strains (mitotypes) of S. frugiperda were identified using mitochondrial DNA (mtDNA) markers, and their pheromonal composition determined by coupled gas chromatography-mass spectrometric (GC-MS) analysis. Male moth responses to these compounds were evaluated using GC-electroantennographic detection (EAD), electroantennogram (EAG), and wind tunnel assays. Oviposition assays were used to determine whether R and C mitotype moths could mate and produce eggs. The results showed that both the R and C mitotypes were present, and there were no statistically significant differences in their distribution across all sampled locations. Five pheromone compounds including (Z)-7-dodecenyl acetate (Z7-12:OAc), (Z)-7-tetradecenyl acetate (Z7-14:OAc), (Z)-9-tetradecenyl acetate (Z9-14:OAc), (Z)-11-tetradecenyl acetate (Z11-14:OAc) and (Z)-11-hexadecenyl acetate (Z11-16:OAc), were detected in the pheromone glands of female moths of both mitotypes, with Z9-14:OAc being the most abundant. The relative percentage composition of Z9-14:OAc was similar in both mitotypes. However, the R mitotype had a 2.7 times higher relative percentage composition of Z7-12:OAc compared to the C mitotype moth, while the C mitotype moth had a 2.4 times higher relative percentage composition of Z11-16:OAc than the R mitotype moth. Male moths of both mitotypes exhibited similar responses to the pheromone compounds, showing the strongest responses to Z9-14:OAc and Z7-12:OAc in electrophysiological and behavioural assays. There was mating between R and C mitotypes with egg production comparable to mating within the same mitotype. Our results revealed that differences between the two S. frugiperda mitotypes are characterized by female moth pheromone composition rather than male moth responses to the pheromones, and that this does not prevent hybridisation between the mitotypes, which may have implications for their management.


Subject(s)
Moths , Sex Attractants , Animals , Female , Spodoptera/genetics , Sex Attractants/chemistry , Pheromones , Moths/genetics , Moths/chemistry , Kenya
2.
Evolution ; 68(7): 1934-46, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24635214

ABSTRACT

Genetically polymorphic species offer the possibility to study maintenance of genetic variation and the potential role for genetic drift in population divergence. Indirect inference of the selection regimes operating on polymorphic traits can be achieved by comparing population divergence in neutral genetic markers with population divergence in trait frequencies. Such an approach could further be combined with ecological data to better understand agents of selection. Here, we infer the selective regimes acting on a polymorphic mating trait in an insect group; the dorsal structures (either rough or smooth) of female diving beetles. Our recent work suggests that the rough structures have a sexually antagonistic function in reducing male mating attempts. For two species (Dytiscus lapponicus and Graphoderus zonatus), we could not reject genetic drift as an explanation for population divergence in morph frequencies, whereas for the third (Hygrotus impressopunctatus) we found that divergent selection pulls morph frequencies apart across populations. Furthermore, population morph frequencies in H. impressopunctatus were significantly related to local bioclimatic factors, providing an additional line of evidence for local adaptation in this species. These data, therefore, suggest that local ecological factors and sexual conflict interact over larger spatial scales to shape population divergence in the polymorphism.


Subject(s)
Coleoptera/genetics , Evolution, Molecular , Genetic Drift , Selection, Genetic , Alleles , Animals , Coleoptera/physiology , Ecosystem , Female , Genetic Variation , Male , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...