Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Gen Comp Endocrinol ; 330: 114128, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36152768

ABSTRACT

Eyestalk-derived neuropeptides, primarily the crustacean hyperglycemic hormone (CHH) neuropeptide family, regulate vitellogenesis in decapod crustaceans. The red deep-sea crab, Chaceon quinquedens, a cold-water species inhabiting depths between 200 and 1800 m, has supported a small fishery, mainly harvesting adult males in the eastern US for over 40 years. This study aimed to understand the role of eyestalk-neuropeptides in vitellogenesis in C. quinquedens with an extended intermolt stage. Chromatography shows two CHH and one MIH peak in the sinus gland, with a CHH2 peak area four times larger than CHH1. The cDNA sequence of MIH and CHH of C. quinquedens is isolated from the eyestalk ganglia, and the qPCR assay shows MIH is significantly higher only at ovarian stages 3 than 4 and 5. However, MIH transcript and its neuropeptides do differ between stages 1 and 3. While CHH transcripts remain constant, its neuropeptide levels are higher at stages 3 than 1. Additionally, transcriptomic analysis of the de novo eyestalk ganglia assembly at ovarian stages 1 and 3 found 28 eyestalk neuropeptides. A GIH/VIH or GSH/VSH belonging to the CHH family is absent in the transcriptome. Transcripts per million (TPM) values of ten neuropeptides increase by 1.3 to 2.0-fold at stage 3 compared to stage 1: twofold for Bursicon α, followed by CHH, AKH/corazonin-like, Pyrokinin, CCAP, Glycoprotein B, PDH1, and IDLSRF-like peptide, and 1.3-fold of allatostatin A and short NP-F. WXXXRamide, the only downregulated neuropeptide, decreases TPM by âˆ¼ 2-fold at stage 3, compared to stage 1. Interestingly, neuroparsin with the highest TPM values remains the same in stages 1 and 3. The mandibular organ-inhibiting hormone is not found in de novo assembly. We report that CHH, MIH, and eight other neuropeptides may play a role in vitellogenesis in this species.


Subject(s)
Brachyura , Invertebrate Hormones , Neuropeptides , Animals , Male , Female , Brachyura/genetics , Invertebrate Hormones/genetics , Arthropod Proteins/genetics , Neuropeptides/genetics , Neuropeptides/chemistry , Ganglia , DNA, Complementary , Transcriptome
2.
PLoS One ; 17(2): e0261206, 2022.
Article in English | MEDLINE | ID: mdl-35113906

ABSTRACT

Harvesting the adult male Jonah crab, Cancer borealis, mainly based on the size, has become an economically significant fishery, particularly in the Southern New England region of the US since 2000. Many decapod crustacean fisheries including C. borealis rely on harvesting adult males. Understanding the size related-sexual maturity and the seasonal changes in male reproductive activity is critical for sustainable management. In other decapods, an insulin-like hormone produced by the male-specific androgenic gland (AG), called insulin-like androgenic gland factor (IAG), plays an essential role in sexual maturity. Specifically IAG is involved in developing male primary and secondary sexual characteristics including spermatogenesis. This study aimed first to identify the IAG, then examine if season influences IAG expression in C. borealis males. Finally, the AG transcriptome was used to test if eyestalk neuropeptides regulate IAG levels via an endocrine axis between the two endocrine tissues as established in other crustaceans. The full-length CabIAG sequence is 928 nucleotides long, encoding a 151 amino acid deduced sequence. The CabIAG identified from the AG transcriptome after eyestalk ablation was the most highly expressed gene and accounted for up to 25% of transcripts, further confirming the presence of an endocrine axis between the androgenic gland and eyestalk ganglia. This gene expression was exclusive in male C. borealis AG. The transcriptomic analysis also revealed strong upregulation of the PPOAE transcript and downregulation of proteolytic enzymes. The CabIAG levels differ by season, increasing AG activity in fall and possibly coinciding with high mating activity. The timing of increased AG activity correlating to mating with females should be considered for better stock management for the C. borealis population.


Subject(s)
Brachyura , Animals
3.
Article in English | MEDLINE | ID: mdl-34628057

ABSTRACT

Cadmium (Cd) can adversely affect aquatic life, altering reproductive and molting processes in crustaceans. The objective of this study was to evaluate the influence of Cd on reproduction and molting in the crab Callinectes danae. Adult females were obtained from environments with different levels of pollution: low (LC), medium (MC), and high contaminated (HC) areas. Animals from LC, MC, and HC areas were exposed to 0, 0.5, and 2 mg L-1 of CdCl2 for 3 h. Cd bioaccumulation, oxidative stress (evaluated by antioxidant enzymes activity), and lipid peroxidation (LPX) were analyzed in mature ovaries (stage II), gills, and hepatopancreas. The expression levels of crustacean hyperglycemic hormone (CHH) and molt-inhibiting hormone (MIH) genes were quantified in the eyestalks, while 17ß-estradiol (E2) and melatonin concentration were measured in the hemolymph. Cd bioaccumulated mainly in the hepatopancreas and gills, with increased E2, LPX, and antioxidant enzymes in HC compared to the LC region. Decreased CHH and MIH transcripts were observed in the animals from HC regions compared to LC and MC areas. Physiological differences were recorded, especially for bioaccumulation, oxidative stress, and hormone levels, in animals sampled in HC areas compared to LC and MC regions. In conclusion, the physiological damage triggered by Cd could be reduced due to higher levels of melatonin and antioxidant enzymes in HC areas.


Subject(s)
Cadmium/toxicity , Crustacea/metabolism , Environmental Monitoring/methods , Environmental Pollutants/toxicity , Lipid Peroxidation/drug effects , Neuromuscular Junction/drug effects , Animals , Female , Neurons/drug effects
4.
Mar Drugs ; 15(8)2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28763037

ABSTRACT

The insulin-like androgenic gland hormone (IAG) found in decapod crustaceans is known to regulate sexual development in males. IAG is produced in the male-specific endocrine tissue, the androgenic gland (AG); however, IAG expression has been also observed in other tissues of decapod crustacean species including Callinectes sapidus and Scylla paramamosain. This study aimed to isolate the full-length cDNA sequence of IAG from the AG of male red deep-sea crabs, Chaceon quinquedens (ChqIAG), and to examine its tissue distribution. To this end, we employed polymerase chain reaction cloning with degenerate primers and 5' and 3' rapid amplification of cDNA ends (RACE). The full-length ChqIAG cDNA sequence (1555 nt) includes a 366 nt 5' untranslated region a 453 nt open reading frame encoding 151 amino acids, and a relatively long 3' UTR of 733 nt. The ORF consists of a 19 aa signal peptide, 32 aa B chain, 56 aa C chain, and 44 aa A chain. The putative ChqIAG amino acid sequence is most similar to those found in other crab species, including C. sapidus and S. paramamosain, which are clustered together phylogenetically.


Subject(s)
Androgens/metabolism , Brachyura/metabolism , Insulin/analysis , Animals , Insulin/metabolism , Invertebrate Hormones/physiology , Male , Oceans and Seas , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...