Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Wellcome Open Res ; 8: 354, 2023.
Article in English | MEDLINE | ID: mdl-38618197

ABSTRACT

We present a genome assembly from an individual Lumbricus rubellus (the red compost earthworm; Annelida; Clitellata; Haplotaxida; Lumbricidae). The genome sequence is 787.5 megabases in span. Most of the assembly is scaffolded into 18 chromosomal pseudomolecules. The mitochondrial genome has also been assembled and is 15.81 kilobases in length. Gene annotation of this assembly on Ensembl identified 33,426 protein coding genes.

2.
Environ Sci Technol ; 55(5): 3059-3069, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33559465

ABSTRACT

Neonicotinoids are currently licensed for use in 120 countries, making accurate nontarget species sensitivity predictions critical. Unfortunately, such predictions are fraught with uncertainty, as sensitivity is extrapolated from only a few test species and neonicotinoid sensitivities can differ greatly between closely related taxa. Combining classical toxicology with de novo toxicogenomics could greatly improve sensitivity predictions and identify unexpectedly susceptible species. We show that there is a >30-fold differential species sensitivity (DSS) for the neonicotinoid imidacloprid between five earthworm species, a critical nontarget taxon. This variation could not be explained by differential toxicokinetics. Furthermore, comparing key motif expression in subunit genes of the classical nicotinic acetylcholine receptor (nAChR) target predicts only minor differences in the ligand binding domains (LBDs). In contrast, predicted dissimilarities in LBDs do occur in the highly expressed but nonclassical targets, acetylcholine binding proteins (AChBPs). Critically, the predicted AChBP divergence is capable of explaining DSS. We propose that high expression levels of putative nonsynaptic AChBPs with high imidacloprid affinities reduce imidacloprid binding to critical nAChRs involved in vital synaptic neurotransmission. This study provides a clear example of how pragmatic interrogation of key motif expression in complex multisubunit receptors can predict observed DSS, thereby informing sensitivity predictions for essential nontarget species.


Subject(s)
Insecticides , Receptors, Nicotinic , Animals , Insecticides/toxicity , Neonicotinoids/toxicity , Nitro Compounds/toxicity , Oligochaeta , Receptors, Nicotinic/genetics , Toxicogenetics
3.
Article in English | MEDLINE | ID: mdl-33164845

ABSTRACT

Polychaetes are vital for evaluating the effects of toxic metals in marine systems, and sensitive molecular biomarkers should be integral to monitoring efforts. However, the few polychaete markers that exist are inconsistent, even within the same species, failing to identify gene expression changes in metal-exposed animals incurring clear metabolic costs. Comparing previously characterised polychaete metal-responsive genes with those of another carefully selected species could identify biomarkers applicable across polychaetes. The ragworm Alitta virens (Sars, 1835) is particularly suited for such comparisons due to its dominance of fully saline coastal areas, widespread distribution, large biomass, and its phylogenetic position relative to other polychaete 'omic' resources. A transcriptome atlas for A. virens was generated and an RNASeq-qPCR screening approach was used to characterise the response to chronic exposures of environmentally relevant concentrations of copper and zinc in controlled mesocosms. Genes presenting dramatic expression changes in A. virens were compared with known metal-responsive genes in other polychaetes to identify new possible biomarkers and assess those currently used. This revealed some current markers should probably be abandoned (e.g. Atox1), while others, such as GST-Omega, should be used with caution, as different polychaete species appear to upregulate distinct GST-Omega orthologues. In addition, the comparisons give some indication of genes that are induced by metal exposure across phylogenetically divergent polychaetes, including a suite of haemoglobin subunits and linker chains that could play conserved roles in metal-stress response. Although such newly identified markers need further characterisation, they offer alternatives to current markers that are plainly insufficient.


Subject(s)
Annelida/genetics , Biomarkers/analysis , Metals/toxicity , Polychaeta/genetics , Transcriptome/drug effects , Animals , Copper/toxicity , Gene Expression Profiling/methods , Gene Ontology , Polychaeta/classification , RNA-Seq/methods , Reverse Transcriptase Polymerase Chain Reaction , Species Specificity , Water Pollutants, Chemical/toxicity , Zinc/toxicity
4.
Nanomaterials (Basel) ; 10(12)2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33322568

ABSTRACT

Chemoinformatics has developed efficient ways of representing chemical structures for small molecules as simple text strings, simplified molecular-input line-entry system (SMILES) and the IUPAC International Chemical Identifier (InChI), which are machine-readable. In particular, InChIs have been extended to encode formalized representations of mixtures and reactions, and work is ongoing to represent polymers and other macromolecules in this way. The next frontier is encoding the multi-component structures of nanomaterials (NMs) in a machine-readable format to enable linking of datasets for nanoinformatics and regulatory applications. A workshop organized by the H2020 research infrastructure NanoCommons and the nanoinformatics project NanoSolveIT analyzed issues involved in developing an InChI for NMs (NInChI). The layers needed to capture NM structures include but are not limited to: core composition (possibly multi-layered); surface topography; surface coatings or functionalization; doping with other chemicals; and representation of impurities. NM distributions (size, shape, composition, surface properties, etc.), types of chemical linkages connecting surface functionalization and coating molecules to the core, and various crystallographic forms exhibited by NMs also need to be considered. Six case studies were conducted to elucidate requirements for unambiguous description of NMs. The suggested NInChI layers are intended to stimulate further analysis that will lead to the first version of a "nano" extension to the InChI standard.

5.
Sci Rep ; 8(1): 4691, 2018 03 16.
Article in English | MEDLINE | ID: mdl-29549322

ABSTRACT

Phylogenetically distant parasites often infect the same host. Indeed, co-infections can occur at levels greater than expected by chance and are sometimes hyperparasitic. The amphipod Echinogammarus marinus presents high levels of co-infection by two intracellular and vertically transmitted parasites, a paramyxid (Paramarteilia sp. Em) and a microsporidian strain (Dictyocoela duebenum Em). This co-infection may be hyperparasitic and result from an exploitative 'hitchhiking' or a symbiotic relationship between the parasites. However, the best-studied amphipod species are often collected from contaminated environments and may be immune-compromised. Immune-challenged animals frequently present co-infections and contaminant-exposed amphipods present significantly higher levels of microsporidian infection. This suggests the co-infections in E. marinus may result from contaminant-associated compromised immunity. Inconsistent with hyperparasitism, we find that artificial infections transmit Paramarteilia without microsporidian. Our population surveys reveal the co-infection relationship is geographically widespread but find only chance co-infection between the Paramarteilia and another species of microsporidian, Dictyocoela berillonum. Furthermore, we identify a haplotype of the Paramarteilia that presents no co-infection, even in populations with otherwise high co-infection levels. Overall, our results do not support the compromised-immunity hypothesis but rather that the co-infection of E. marinus, although non-hyperparasitic, results from a relationship between specific Paramarteilia and Dictyocoela duebenum strains.


Subject(s)
Amphipoda/microbiology , Amphipoda/parasitology , Microsporidiosis/diagnosis , Protozoan Infections, Animal/diagnosis , Animals , Coinfection , DNA, Fungal/genetics , DNA, Protozoan , Female , Host-Parasite Interactions , Male , Mass Screening/veterinary , Microsporidia/genetics , Microsporidia/isolation & purification , Microsporidiosis/transmission , Microsporidiosis/veterinary , Phylogeny , Protozoan Infections, Animal/transmission
6.
Parasitology ; 142(12): 1469-80, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26282621

ABSTRACT

Changes to host behaviour induced by some trematode species, as a means of increased trophic transmission, represents one of the seminal examples of host manipulation by a parasite. The amphipod Echinogammarus marinus (Leach, 1815) is infected with a previously undescribed parasite, with infected individuals displaying positive phototaxic and negative geotaxic behaviour. This study reveals that the unknown parasite encysts in the brain, nerve cord and the body cavity of E. marinus, and belongs to the Microphallidae family. An 18 month population study revealed that host abundance significantly and negatively correlated with parasite prevalence. Investigation of the trematode's influence at the transcriptomic level revealed genes with putative neurological functions, such as serotonin receptor 1A, an inebriated-like neurotransmitter, tryptophan hydroxylase and amino acid decarboxylase, present consistent altered expression in infected animals. Therefore, this study provides one of the first transcriptomic insights into the neuronal gene pathways altered in amphipods infected with a trematode parasite associated with changes to its host's behaviour and population structure.


Subject(s)
Amphipoda/parasitology , Behavior, Animal , Gene Expression Regulation , Host-Parasite Interactions , Trematoda , Acanthocephala/physiology , Amphipoda/genetics , Amphipoda/growth & development , Amphipoda/physiology , Animals , Base Sequence , DNA, Helminth/chemistry , DNA, Helminth/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Female , Male , Molecular Sequence Data , Phylogeny , Seasons , Sequence Analysis, DNA/veterinary , Trematoda/classification , Trematoda/genetics , Trematoda/isolation & purification , Trematoda/physiology
7.
PeerJ ; 3: e757, 2015.
Article in English | MEDLINE | ID: mdl-25699206

ABSTRACT

Crustacean intersexuality is widespread and often linked to infection by sex-distorting parasites. However, unlike vertebrate intersexuality, its association with sexual dysfunction is unclear and remains a matter of debate. The 'Demon Shrimp,' Dikerogammarus haemobaphes, an amphipod that has invaded continental waterways, has recently become widespread in Britain. Intersexuality has been noted in D. haemobaphes but not investigated further. We hypothesise that a successful invasive population should not display a high prevalence of intersexuality if this condition represents a truly dysfunctional phenotype. In addition, experiments have indicated that particular parasite burdens in amphipods may facilitate invasions. The rapid and ongoing invasion of British waterways represents an opportunity to determine whether these hypotheses are consistent with field observations. This study investigates the parasites and sexual phenotypes of D. haemobaphes in British waterways, characterising parasite burdens using molecular screening, and makes comparisons with the threatened Gammarus pulex natives. We reveal that invasive and native populations have distinct parasitic profiles, suggesting the loss of G. pulex may have parasite-mediated eco-system impacts. Furthermore, the parasite burdens are consistent with those previously proposed to facilitate biological invasions. Our study also indicates that while no intersexuality occurs in the native G. pulex, approximately 50% of D. haemobaphes males present pronounced intersexuality associated with infection by the microsporidian Dictyocoela berillonum. This unambiguously successful invasive population presents, to our knowledge, the highest reported prevalence of male intersexuality. This is the clearest evidence to date that such intersexuality does not represent a form of debilitating sexual dysfunction that negatively impacts amphipod populations.

8.
Environ Sci Technol ; 48(22): 13520-9, 2014 Nov 18.
Article in English | MEDLINE | ID: mdl-25343324

ABSTRACT

The dysfunction associated with intersexuality in vertebrates and molluscs is often a serious threat to ecosystems. Although poorly understood, crustacean intersexuality is associated with contamination and includes forms linked to increased sex-ratio distorting parasites at polluted sites. Despite the importance of crustaceans for monitoring vulnerable aquatic habitats, little is known about the molecular basis of this abnormal sexual differentiation and any associated sexual dysfunction. To increase the relevance of crustaceans to environmental toxicologists, we comprehensively analyzed gene expression in amphipods presenting parasite- and nonparasite-associated intersexuality. Our findings reveal existing vertebrate biomarkers of feminization should not be applied to crustaceans, as orthologous genes are not induced in feminized amphipods. Furthermore, in contrast to vertebrates, where feminization and intersexuality is often associated with deleterious demasculinization, we find males maintain masculinity even when unambiguously feminized. This reveals a considerable regulatory separation of the gene pathways responsible for male and female characteristics and demonstrates that evidence of feminization (even if detected with appropriate biomarkers) is not a proxy for demasculinization in crustaceans. This study has also produced a comprehensive spectrum of potential molecular biomarkers that, when combined with our new molecular understanding, will greatly facilitate the use of crustaceans to monitor aquatic habitats.


Subject(s)
Crustacea/drug effects , Disorders of Sex Development/complications , Ecotoxicology , Endocrine Disruptors/toxicity , Sex Characteristics , Sex Determination Processes , Sex Differentiation/drug effects , Amphipoda , Animals , Biomarkers , Female , Feminization , Male , Ovariectomy , Sex Differentiation/physiology , Sex Ratio , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...