Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Econ Entomol ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38757658

ABSTRACT

The hibiscus bud weevil (HBW), Anthonomus testaceosquamosus Linell (Coleoptera: Curculionidae), is a significant threat to tropical hibiscus (Hibiscus rosa-sinensis) in Florida, USA, since its invasion in 2017. As a regulated pest in the state, early detection is crucial. Based on the success of pheromone-based monitoring programs for other weevil pests, such as the boll weevil, cranberry weevil, and pepper weevil, this study explores the potential use of these pheromone lures for early detection of HBW. To account for differences in efficacy based on trap color, height, and design, different pheromone lure sizes (4 mm, 10 mm, full-size), trap types (Yellow sticky trap, Japanese beetle trap, Boll weevil trap), and heights (0 m, 1.1 m) were also tested in this study. In laboratory assays, males and females exhibited higher attraction to full-size cranberry weevil lure discs than other lure size-type combinations. In semi-field trials, yellow sticky traps baited with cranberry weevil lures captured more weevils than Japanese beetle or boll weevil traps baited with cranberry weevil lures, while trap height did not influence HBW capture. In semi-field, 4-choice bioassays, yellow sticky traps baited with cranberry weevil lures captured more HBW compared to yellow sticky traps baited with pepper weevil, boll weevil, or unbaited traps. Further research is required to thoroughly evaluate the cranberry weevil lure's efficacy in capturing HBW. Our study suggests the potential for utilizing yellow sticky traps baited with lures for early HBW detection and highlights the importance of selecting the appropriate lure, trap type, and height for optimal efficacy.

2.
Insects ; 14(6)2023 Jun 11.
Article in English | MEDLINE | ID: mdl-37367360

ABSTRACT

In 2017, the hibiscus bud weevil (HBW), Anthonomus testaceosquamosus Linell (Coleoptera: Curculionidae), was found outside of its native range of Mexico and Texas, infesting hibiscus plants in Florida. Therefore, we selected 21 different insecticide and horticultural oil products to evaluate their effects on the reproductive rate, feeding, and oviposition behavior of the HBW. In laboratory experiments, significant mortality was observed in adult weevils exposed to diflubenzuron-treated hibiscus leaves and buds, and hibiscus buds treated with diflubenzuron contained the fewest number of eggs and feeding/oviposition holes. Among horticultural oil products, significant mortality was only observed in experiments in which adult weevils were directly sprayed (direct experiments). Pyrethrins and spinetoram plus sulfoxaflor reduced the oviposition rate and caused significant mortality in direct experiments. Diflubenzuron, pyrethrins, spinetoram plus sulfoxaflor, and spirotetramat were further tested via contact toxicity experiments and greenhouse experiments. Contact toxicity experiments demonstrated that the tested insecticides (except diflubenzuron) were highly toxic to HBW adults. In greenhouse experiments, only those hibiscus plants treated with pyrethrins had significantly fewer feeding/oviposition holes and larvae within their flower buds when compared to control (water-treated) plants. These results constitute an important first step in the identification of effective chemical control options for the HBW.

3.
Environ Entomol ; 50(2): 477-488, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33480406

ABSTRACT

Although site-specific pest management has the potential to decrease control costs and environmental impact associated with traditional pest management tactics, the success of these programs relies on the accurate characterization of arthropod distributions within a crop. Because potential correlation of insect counts with remotely sensed field attribute data could help to decrease the costs associated with and need for fine-scale spatial sampling, we chose to determine which within-field variables would be informative of soybean arthropod counts in an attempt to move toward site-specific pest management in this crop. Two soybean fields were grid-sampled for pestiferous and predaceous arthropods, plant productivity estimates, and abiotic variable characterization in 2017-2018. Negative binomial, zero-inflated models were used to estimate presence and counts of soybean arthropod taxa based on normalized difference vegetation index (NDVI), soybean plant height, soil electrical conductivity (ECa), elevation, and calendar week. Among all variables, calendar week was the most reliable predictor of arthropod counts, as it was a significant predictor for a majority of all taxa. Additionally, counts for a majority of pestiferous taxa were significantly associated with distance from the field edge, elevation, soybean plant height, and NDVI. Although site-specific pest management has the potential for reduced management inputs and increased profitability over conventional management (i.e., whole-field) practices, management zones must first be clearly defined based on the within-field variability for the variables of interest. If site-specific pest management practices are to be applied in soybean, calendar week (and associated soybean phenology), soybean plant height (and associated elevation), and NDVI may be useful for describing the distributions of pests, such as kudzu bug, Megacopta cribraria (Hemiptera: Plataspidae) (Fabricius), green cloverworm, Hypena scabra (Lepidoptera: Erebidae) (Fabricius), velvetbean caterpillar, Anticarsia gemmatalis (Lepidoptera: Erebidae) (Hübner), and soybean looper, Chrysodeixis includens (Lepidoptera: Noctuidae) (Walker).


Subject(s)
Arthropods , Heteroptera , Moths , Animals , Insecta , Glycine max
4.
Insects ; 13(1)2021 Dec 22.
Article in English | MEDLINE | ID: mdl-35055856

ABSTRACT

Originating in northeastern Mexico and southern Texas, the hibiscus bud weevil (HBW), Anthonomus testaceosquamosus Linell 1897, was discovered infesting China rose hibiscus (Hibiscus rosa-sinensis L.) in south Florida in May 2017. Although the biologies of the congeneric boll weevil, A. grandis Boheman 1843, and pepper weevil, A. eugenii Cano 1894 are well documented, no data are available regarding the biology of HBW. Here, we present a comprehensive study on the biology of this pest when reared at 10, 15, 27 and 34 °C and on different food sources. This weevil has three larval instars and its life cycle was completed only at 27 ± 1 °C. Weevil development was similar on an artificial diet when compared with a diet of hibiscus buds. Adult HBW could survive solely on pollen, but reproduction did not occur. Without water, HBW survived for ≈15 days; survival times reached nearly 30 days when water was accessible. Our results suggest that if left unmanaged, HBW has the potential to cause significant economic damage to the hibiscus industry. Given that a comprehensive understanding of a pest's biology is critical for development of effective integrated pest management, our results provide a foundation for future research endeavors to mitigate the impact of this weevil in south Florida.

SELECTION OF CITATIONS
SEARCH DETAIL
...