Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
1.
Sci Total Environ ; 807(Pt 2): 150870, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-34627912

ABSTRACT

Irrigation enhances the connectivity between the surface and groundwater by facilitating the transport of energy sources and oxygen. When combined with fertilisers, the impact on groundwater microbial communities and their interactions with nitrogen cycling in aquifers is poorly understood. This study examines the impact of different landuses (irrigated and non-irrigated) on groundwater microbial communities. A total of 38 wells accessing shallow aquifers in three sub-catchments of the Murray Darling Basin, Australia, were sampled for water chemistry and microbial community structure using environmental DNA (eDNA) techniques. All sub-catchments showed evidence of intense irrigation and groundwater contamination with total nitrogen, nitrates and phosphorus concentrations often well above background, with total nitrogen concentrations up to 70 mg/L and nitrate concentration up to 18 mg/L. Across sub-catchments there was high microbial diversity, with differences in community structure and function between catchments and landuses. Of the 1100 operational taxonomic units (OTUs) recorded, 47 OTUs were common across catchments with species from Woesearchaeota, Nitrospirales, Nitrosopumilales and Acidobacter taxonomic groups contributing greatly to groundwater microbial communities. Within non-irrigated sites, groundwaters contained similar proportions of nitrifying and denitrifying capable taxa, whereas irrigated sites had significantly higher abundances of microbes with nitrifying rather than denitrifying capabilities. Microbial diversity was lower in irrigated sites in the Macquarie catchment. These results indicate that irrigated landuses impact microbial community structure and diversity within groundwaters and suggest that the ratios of denitrifying to nitrifying capable microbes as well as specific orders (e.g., Nitrososphaerales) may be useful to indicate long-term nitrogen contamination of groundwaters. Such research is important for understanding the biogeochemical processes that are key predictors of redox state and contamination of groundwater by N species and other compounds. This will help to predict human impacts on groundwater microbial structure, diversity, and ecosystem functions, aiding the long-term management groundwater resources.


Subject(s)
Ecosystem , Groundwater , Anthropogenic Effects , Australia , Bacteria/genetics , Humans
2.
Environ Pollut ; 247: 1028-1038, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30823331

ABSTRACT

Anthropogenic activities, such as mining and agriculture, have resulted in many freshwater systems having elevated concentrations of copper. Despite the prevalence of this contamination, and the vital ecological function of prokaryotes, just three studies have investigated prokaryote community responses to copper concentration in freshwater sediments. To address this, the current study investigated these communities in outdoor mesocosms spiked with varying copper concentrations. We profiled the prokaryotic communities at the taxonomic level, using next-generation high-throughput sequencing techniques, as well as their function, using baiting with leaf analogues, and Biolog Ecoplates for community-level physiological profiling. Sediments containing just 46 mg kg-1 of copper, had distinctly different microbial communities compared with controls, as determined by both DNA and RNA 16S ribosomal RNA gene (rRNA) profiling. In addition to this, sediment communities displayed a greatly reduced utilisation of carbon substrates under elevated copper, while the communities recruited onto leaf analogues were also disparate from those of control ponds. Given the vital role of prokaryotes in ecosystem processes, including carbon cycling, these changes are potentially of great ecological relevance, and are seen to occur well below the 'low risk' sediment quality guideline values (SQGV) used by regulatory bodies internationally.


Subject(s)
Bacteria/chemistry , Copper/chemistry , Environmental Monitoring , Fresh Water/microbiology , Geologic Sediments/microbiology , Microbiota/drug effects , Water Pollutants, Chemical/chemistry , Australia , Fresh Water/chemistry , Geologic Sediments/chemistry
3.
Front Psychol ; 4: 160, 2013.
Article in English | MEDLINE | ID: mdl-23750140

ABSTRACT

Using a naturalistic video database, we examined whether gestures scaffold the symbolic development of a language-enculturated chimpanzee, a language-enculturated bonobo, and a human child during the second year of life. These three species constitute a complete clade: species possessing a common immediate ancestor. A basic finding was the functional and formal similarity of many gestures between chimpanzee, bonobo, and human child. The child's symbols were spoken words; the apes' symbols were lexigrams - non-iconic visual signifiers. A developmental pattern in which gestural representation of a referent preceded symbolic representation of the same referent appeared in all three species (but was statistically significant only for the child). Nonetheless, across species, the ratio of symbol to gesture increased significantly with age. But even though their symbol production increased, the apes continued to communicate more frequently by gesture than by symbol. In contrast, by 15-18 months of age, the child used symbols more frequently than gestures. This ontogenetic sequence from gesture to symbol, present across the clade but more pronounced in child than ape, provides support for the role of gesture in language evolution. In all three species, the overwhelming majority of gestures were communicative (i.e., paired with eye contact, vocalization, and/or persistence). However, vocalization was rare for the apes, but accompanied the majority of the child's communicative gestures. This species difference suggests the co-evolution of speech and gesture after the evolutionary divergence of the hominid line. Multimodal expressions of communicative intent (e.g., vocalization plus persistence) were normative for the child, but less common for the apes. This species difference suggests that multimodal expression of communicative intent was also strengthened after hominids diverged from apes.

4.
Science ; 318(5857): 1737-42, 2007 Dec 14.
Article in English | MEDLINE | ID: mdl-18079392

ABSTRACT

Atmospheric carbon dioxide concentration is expected to exceed 500 parts per million and global temperatures to rise by at least 2 degrees C by 2050 to 2100, values that significantly exceed those of at least the past 420,000 years during which most extant marine organisms evolved. Under conditions expected in the 21st century, global warming and ocean acidification will compromise carbonate accretion, with corals becoming increasingly rare on reef systems. The result will be less diverse reef communities and carbonate reef structures that fail to be maintained. Climate change also exacerbates local stresses from declining water quality and overexploitation of key species, driving reefs increasingly toward the tipping point for functional collapse. This review presents future scenarios for coral reefs that predict increasingly serious consequences for reef-associated fisheries, tourism, coastal protection, and people. As the International Year of the Reef 2008 begins, scaled-up management intervention and decisive action on global emissions are required if the loss of coral-dominated ecosystems is to be avoided.


Subject(s)
Anthozoa , Climate , Ecosystem , Greenhouse Effect , Seawater/chemistry , Animals , Anthozoa/growth & development , Anthozoa/physiology , Atmosphere , Carbon Dioxide , Dinoflagellida/physiology , Eukaryota/physiology , Fishes , Forecasting , Hydrogen-Ion Concentration , Oceans and Seas , Temperature
5.
Water Sci Technol ; 52(1-2): 39-47, 2005.
Article in English | MEDLINE | ID: mdl-16180407

ABSTRACT

The debate as to whether carbon dioxide, methane, nitrous oxide and other greenhouse gas emissions will become subject to increasing regulation, increased restrictions, and probably to some form of carbon tax, has moved from a simple "yes" or "no" to "when". Wastewater treatment plants will be significantly impacted by increased energy costs and by specific regulations and/or penalties associated with emissions of methane and nitrous oxide. In this paper, the greenhouse gases emissions of different wastewater process options are estimated. The paper outlines the increasing need for wastewater treatment plants to factor greenhouse gas mitigation issues into their medium- as and long-term strategies, and identifies anaerobic enhouse as processes as being at the core of such strategies. Further, the paper identifies a number of key research challenges to be addressed if such strategies are to play a larger role in attenuating the likely impacts of GHG mitigation requirements on wastewater treatment plant design and operation.


Subject(s)
Air Pollutants , Bacteria, Anaerobic/metabolism , Conservation of Energy Resources , Waste Disposal, Fluid/methods , Carbon Dioxide , Government Regulation , Greenhouse Effect , Methane , Nitrous Oxide , Waste Disposal, Fluid/legislation & jurisprudence
6.
Water Sci Technol ; 50(10): 59-65, 2004.
Article in English | MEDLINE | ID: mdl-15656296

ABSTRACT

Bench-scale systems, using conventional and compact hybrid activated sludge configurations, were set up to evaluate the systems' nitrification-denitrification performance, operating sludge age/MLSS concentration and sludge settleability at a Hong Kong municipal STW. Configurations tested were the continuous clarifier modified Ludzack Ettinger (MLE) and the sequencing batch reactor (SBR) with and without hybrid suspended biofilm carriers. Results demonstrated that the hybrid SBR and MLE systems consistently achieved close to complete nitrification (effluent NH4-N = 2.4 and 6.9 mg/L) and 75% and 67% removal of nitrogen (N) (effluent NO3-N < 10 mg/L) with an overall hydraulic retention time of only 7.5 hours, operating sludge age as short as 5.2 days, and mixed liquor suspended solids concentration of approximately 1,300 mg/L with a sludge volume index of 109 and 229 mL/g, respectively. The most sensitive and slowest growing nitrifiers attached to the hybrid biofilm carriers. This allowed the hybrid processes to be operated at a sludge age shorter than the critical nitrifying sludge age while still retaining near complete nitrification. In contrast, to achieve complete nitrification, the conventional MLE system needed to be operated at 1.5 to 2.5 times the critical sludge age. These results indicate that the hybrid MLE configuration is a suitable process for use in upgrading existing conventional works for N removal and for increasing hydraulic capacity of existing N removal works, without major civil works modifications, in Hong Kong. For new works, consideration might be given to the use of the hybrid SBR, which shows a more stable N removal performance than the MLE process due to its inherent in-basin equalization capacity and better reaction conditions for nitrification in terms of higher initial NH4-N level. It was also observed that the conventional SBR produced better nitrification performance than the hybrid MLE process tested. Design parameters and operating conditions of the hybrid systems should be subjected to further full-scale trial for higher hydraulic capacity and N removal performance.


Subject(s)
Bioreactors , Sewage/microbiology , Waste Disposal, Fluid/methods , Ammonia/isolation & purification , Ammonia/metabolism , Bacteria/metabolism , Biofilms , Facility Design and Construction , Hong Kong , Hydrogen-Ion Concentration , Nitrites/chemistry , Nitrites/metabolism , Nitrogen/isolation & purification , Nitrogen/metabolism , Sewage/chemistry , Time Factors , Water Movements
7.
Environ Technol ; 23(10): 1081-90, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12465834

ABSTRACT

The benefits and extent of mixing required during biomethanation of cattle-manure slurry was studied by investigating the effect of: 1) continuous and intermittent mixing, 2) agitator impeller speed and position; 3) not providing assisted mixing; 4) mixing on production of extracellular polymeric substances; and 5) mixing on the ultimate anaerobic biodegradability. Biomethanation was not adversely affected: during intermittent mixing; or when only sufficient mixing was provided to maintain off-bottom suspension of digester contents; or by doubling impeller speed. In fact continuous digestion of cattle-manure slurry without mechanical stirring was superior in terms of gas production. This can be attributed to increased loss of active volatile solids during stirring. Moreover, long-term batch digestion studies showed that the rate of biomethanation in a continuously stirred digester was inferior to that of a non-stirred one. Mixing was found to decrease production of extracellular polymeric substances (EPS). The presence of an increased level of EPS during the quiescent state could indicate increased attachment of cells to each other, resulting in larger agglomerates with better settling properties thus increasing biomass retention time.


Subject(s)
Manure , Methane/chemistry , Refuse Disposal/methods , Animals , Bacteria, Anaerobic , Biodegradation, Environmental , Biomass , Cattle
8.
Water Sci Technol ; 46(11-12): 209-16, 2002.
Article in English | MEDLINE | ID: mdl-12523756

ABSTRACT

The process performance of the two largest activated sludge processes in Hong Kong, the Sha Tin and the Tai Po Sewage Treatment Works (STW), deteriorated in the initial period after the introduction of seawater flushing in 1995 and 1996, respectively. High effluent ammonia nitrogen (NH4-N) and total suspended solids (TSS) in excess of the discharge standards resulted from incomplete nitrification and changes in floc characteristics. A desktop study on the inhibitory effects of salinity, particularly on nitrification, was subsequently conducted using the Tai Po STW operating data. To assist the upgrade of the Sha Tin STW a five-month extensive bench-scale investigation on a simple but flexible modified Ludzack-Ettinger configuration with bio-selector was conducted to quantify the inhibitory effects due to the saline concentration. The Sha Tin STW upgrade consists of restoration of its original design capacity (conventional process) of 205,000 m3/day from its currently much reduced capacity as a Bardenpho process. Only the volume of the existing biological process and clarifier is to be utilized. The saline concentration ranges from 3,500 up to 6,500 mg Cl-/L, both daily and seasonally. High and greatly fluctuating saline concentrations have been known to inhibit nitrification. Design consideration should also be given to the peak daily and seasonal TKN loading of up to three times the average. Although the nitrifiers maximum specific growth rate was significantly reduced to a low 0.25 day(-1), the inhibition was considered to be tolerable with effluent NH4-N and NO3-N consistently at < 1 and < 6 mg/L. The bio-selector was demonstrated to be efficient in control of sludge foaming and bulking with SVI consistently < or = 125 mL/g. Results from the IAWO Model No. 1 and the hydraulic model of the secondary clarifiers allowed overall process capacity maximization. With an anoxic mass fraction of 25-30%, operating sludge age of 9-14 days and SVI < or = 125 mL/g, both the design requirements and the effluent discharge standards could be met. Without these investigations, an unnecessarily large reaction basin and secondary clarifier volume, and hence capital investment, would have resulted.


Subject(s)
Nitrogen/metabolism , Sewage/chemistry , Waste Disposal, Fluid/methods , Ammonia/chemistry , Facility Design and Construction , Flocculation , Hong Kong , Nitrogen/isolation & purification , Water Movements
9.
Water Sci Technol ; 43(9): 57-70, 2001.
Article in English | MEDLINE | ID: mdl-11419140

ABSTRACT

The Brisbane River and Moreton Bay Study, an interdisciplinary study of Moreton Bay and its major tributaries, was initiated to address water quality issues which link sewage and diffuse loading with environmental degradation. Runoff and deposition of fine-grained sediments into Moreton Bay, followed by resuspension, have been linked with increased turbidity and significant loss of seagrass habitat. Sewage-derived nutrient enrichment, particularly nitrogen (N), has been linked to algal blooms by sewage plume maps. Blooms of a marine cyanobacterium, Lyngbya majuscula, in Moreton Bay have resulted in significant impacts on human health (e.g., contact dermatitis) and ecological health (e.g., seagrass loss), and the availability of dissolved iron from acid sulfate soil runoff has been hypothesised. The impacts of catchment activities resulting in runoff of sediments, nutrients and dissolved iron on the health of the Moreton Bay waterways are addressed. The Study, established by 6 local councils in association with two state departments in 1994, forms a regional component of a national and state program to achieve ecologically sustainable use of the waterways by protecting and enhancing their health, while maintaining economic and social development. The Study framework illustrates a unique integrated approach to water quality management whereby scientific research, community participation and the strategy development were done in parallel with each other. This collaborative effort resulted in a water quality management strategy which focuses on the integration of socioeconomic and ecological values of the waterways. This work has led to significant cost savings in infrastructure by providing a clear focus on initiatives towards achieving healthy waterways. The Study's Stage 2 initiatives form the basis for this paper.


Subject(s)
Conservation of Natural Resources , Sewage , Water Pollution/prevention & control , Australia , Cost Savings , Ecosystem , Environmental Monitoring , Eutrophication , Geologic Sediments , Humans , Interinstitutional Relations , Nitrogen , Public Health , Quality Control
10.
J Colloid Interface Sci ; 238(2): 267-272, 2001 Jun 15.
Article in English | MEDLINE | ID: mdl-11374920

ABSTRACT

Titania sol-pillared clay (TiO(2) PILC) and silica-titania sol-pillared clay (SiO(2)-TiO(2) PILC) were synthesized by the sol-gel method. Supercritical drying (SCD) and treatment with quaternary ammonium surfactants were used to tailor the pore structure of the resulting clay. It was found that SCD approach increased the external surface area of the PILCs dramatically and that treatment with surfactants could be used to tailor pore size because the mesopore formation in the galleries between the clay layers follows the templating mechanism as observed in the synthesis of MCM-41 materials. Highly mesoporous solids were thus obtained. In calcined TiO(2) PILC, ultrafine crystallites in anatase phase, which are active for photocatalytic oxidation of organics, were observed. In SiO(2)-TiO(2) PILCs and their derivatives, titanium was highly dispersed in the matrix of silica and no crystal phase was observed. The highly dispersed titanium sites are good catalytic centers for selective oxidation of organic compounds. Copyright 2001 Academic Press.

13.
Future Child ; 10(2): 123-44, 2000.
Article in English | MEDLINE | ID: mdl-11255703

ABSTRACT

The increasing amount of time children are spending on computers at home and school has raised questions about how the use of computer technology may make a difference in their lives--from helping with homework to causing depression to encouraging violent behavior. This article provides an overview of the limited research on the effects of home computer use on children's physical, cognitive, and social development. Initial research suggests, for example, that access to computers increases the total amount of time children spend in front of a television or computer screen at the expense of other activities, thereby putting them at risk for obesity. At the same time, cognitive research suggests that playing computer games can be an important building block to computer literacy because it enhances children's ability to read and visualize images in three-dimensional space and track multiple images simultaneously. The limited evidence available also indicates that home computer use is linked to slightly better academic performance. The research findings are more mixed, however, regarding the effects on children's social development. Although little evidence indicates that the moderate use of computers to play games has a negative impact on children's friendships and family relationships, recent survey data show that increased use of the Internet may be linked to increases in loneliness and depression. Of most concern are the findings that playing violent computer games may increase aggressiveness and desensitize a child to suffering, and that the use of computers may blur a child's ability to distinguish real life from simulation. The authors conclude that more systematic research is needed in these areas to help parents and policymakers maximize the positive effects and to minimize the negative effects of home computers in children's lives.


Subject(s)
Child Development , Computer Literacy , Microcomputers , Adolescent , Child , Child, Preschool , Female , Humans , Life Style , Male , Obesity/etiology , Obesity/prevention & control , Personality Development , Television , Video Games
14.
Biotechnol Bioeng ; 65(5): 600-4, 1999 Dec 05.
Article in English | MEDLINE | ID: mdl-10516586

ABSTRACT

The baculovirus-expression vector system (BEVS) has been widely used for the experimental production of many human and animal single- and multi-unit vaccines, heterologous proteins, and viral insecticides. In this work, the production of recombinant bluetongue virus core-like particles (CLPs), using Sf9 cells in shaker-suspension culture with the SF900 II medium (GIBCO, NY), has been studied. This system involved the simultaneous production of two proteins, VP7 and VP3, and was shown to achieve high volumetric productivities. The key parameters of the time of infection (TOI), and the multiplicity of infection (MOI) were studied. The results show that the peak-volumetric yields and cell-specific yields achieved using low MOIs at low-cell densities were the same as those obtained following infections with a high MOI at high-cell densities. This work establishes the feasibility of using low MOIs in the baculovirus system to produce complex multiprotein particles.


Subject(s)
Baculoviridae/genetics , Bluetongue virus/genetics , Animals , Biotechnology , Bluetongue virus/immunology , Cell Line , Gene Expression , Humans , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombination, Genetic , Spodoptera , Viral Core Proteins/biosynthesis , Viral Core Proteins/genetics , Viral Core Proteins/immunology , Viral Vaccines/genetics
15.
J Virol Methods ; 80(1): 1-9, 1999 Jun.
Article in English | MEDLINE | ID: mdl-10403670

ABSTRACT

Immunosorbent electron microscopy was used to quantify recombinant baculovirus-generated bluetongue virus (BTV) core-like particles (CLP) in either purified preparations or lysates of recombinant baculovirus-infected cells. The capture antibody was an anti-BTV VP7 monoclonal antibody. The CLP concentration in purified preparations was determined to be 6.6 x 10(15) particles/l. CLP concentration in lysates of recombinant baculovirus-infected cells was determined at various times post-infection and shown to reach a value of 3 x 10(15) particles/l of culture medium at 96 h post-infection. The results indicated that immunosorbent electron microscopy, aided by an improved particle counting method, is a simple, rapid and accurate technique for the quantification of virus and virus-like particles produced in large scale in vitro systems.


Subject(s)
Bluetongue virus/ultrastructure , Viral Core Proteins/analysis , Animals , Bluetongue virus/genetics , Cell Line , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Spodoptera/cytology , Viral Core Proteins/genetics
16.
J Comp Psychol ; 113(2): 137-48, 1999 Jun.
Article in English | MEDLINE | ID: mdl-10384722

ABSTRACT

The authors investigated strategies used to combine seriated cups by apes (Pan troglodytes and P. paniscus) and monkeys (Cebus apella) using a protocol reported in P. M. Greenfield, K. Nelson, and E. Saltzman's (1972) study with children. It was hypothesized that apes would exhibit more hierarchical combinations of cups than monkeys, given apes' language capacity, and that apes would seriate the cups more efficiently than monkeys. As predicted, apes made many structures with the cups using a variety of strategies, and monkeys rarely combined the cups. After a training phase to orient monkeys to the task, the 2 genera did not differ in the strategies used to combine the cups or in efficiency in seriating the cups. Success in this task suggests that sensorimotor versions of hierarchically organized combinatorial activity are well within apes' and monkeys' abilities.


Subject(s)
Behavior, Animal/physiology , Psychomotor Performance/physiology , Animals , Cebus/psychology , Female , Learning/physiology , Male , Pan paniscus/psychology , Pan troglodytes/psychology
18.
Biotechnol Bioeng ; 59(2): 178-88, 1998 Jul 20.
Article in English | MEDLINE | ID: mdl-10099329

ABSTRACT

Fed-batch culture can offer significant improvement in recombinant protein production compared to batch culture in the baculovirus expression vector system (BEVS), as shown by Nguyen et al. (1993) and Bedard et al. (1994) among others. However, a thorough analysis of fed-batch culture to determine its limits in improving recombinant protein production over batch culture has yet to be performed. In this work, this issue is addressed by the optimisation of single-addition fed-batch culture. This type of fed-batch culture involves the manual addition of a multi-component nutrient feed to batch culture before infection with the baculovirus. The nutrient feed consists of yeastolate ultrafiltrate, lipids, amino acids, vitamins, trace elements, and glucose, which were added to batch cultures of Spodoptera frugiperda (Sf9) cells before infection with a recombinant Autographa californica nuclear polyhedrosis virus (AcNPV) expressing beta-galactosidase (beta-Gal). The fed-batch production of beta-Gal was optimised using response surface methods (RSM). The optimisation was performed in two stages, starting with a screening procedure to determine the most important variables and ending with a central-composite experiment to obtain a response surface model of volumetric beta-Gal production. The predicted optimum volumetric yield of beta-Gal in fed-batch culture was 2.4-fold that of the best yields in batch culture. This result was confirmed by a statistical analysis of the best fed-batch and batch data (with average beta-Gal yields of 1.2 and 0.5 g/L, respectively) obtained from this laboratory. The response surface model generated can be used to design a more economical fed-batch operation, in which nutrient feed volumes are minimised while maintaining acceptable improvements in beta-Gal yield.


Subject(s)
Recombinant Proteins/biosynthesis , Transfection , beta-Galactosidase/biosynthesis , Animals , Biotechnology/methods , Cell Culture Techniques/methods , Cell Line , Culture Media , Nucleopolyhedroviruses , Recombinant Proteins/metabolism , Spodoptera , beta-Galactosidase/genetics , beta-Galactosidase/metabolism
19.
Biotechnol Bioeng ; 56(1): 32-44, 1997 Oct 05.
Article in English | MEDLINE | ID: mdl-18636607

ABSTRACT

The inability to infect insect cell cultures at the highest achievable cell densities has imposed major limitations to both the fundamental understanding of the Baculovirus Expression Vector System (BEVS) as well as full exploitation of its potential productive capacity for recombinant (beta-galAcNPV) products. The current literature does not characterize and identify the exact nature of the observed limitations, which therefore has become the major objective and contribution of the following study. Critical densities for infection of Spodoptera frugiperda (Sf9) cells with nuclear polyhedrosis virus expressing beta-galactosidase (Autographa californica) grown in media both containing fetal calf serum (FCS) and free of serum were found to be at 2 x 10(6) and 5 x 10(6) cells/ml respectively. Medium exchange was found to completely reverse the effect if renewed up to 24 hours post-infection (HPI). The inevitable arrest of uninfected cell growth and decreased production of recombinant products at high cell densities of infection were both correlated to nutrient depletion. Cystine was found to be depleted in uninfected insect cell cultures at the onset of the stationary phase and in serum-free insect cell cultures infected with baculovirus above a cell density of 5 x 10(6) cells/ml. Neither glucose depletion nor accumulation of possible inhibitory metabolites such as alanine, ammonia, or lactate could be correlated to growth arrest or decreased recombinant product yields.

20.
Biotechnol Bioeng ; 56(4): 372-9, 1997 Nov 20.
Article in English | MEDLINE | ID: mdl-18642240

ABSTRACT

The use of cell numbers rather than mass to quantify the size of the biotic phase in animal cell cultures causes several problems. First, the cell size varies with growth conditions, thus yields expressed in terms of cell numbers cannot be used in the normal mass balance sense. Second, experience from microbial systems shows that cell number dynamics lag behind biomass dynamics. This work demonstrates that this lag phenomenon also occurs in animal cell culture. Both the lag phenomenon and the variation in cell size are explained using a simple model of the cell cycle. The basis for the model is that onset of DNA synthesis requires accumulation of G1 cyclins to a prescribed level. This requirement is translated into a requirement for a cell to reach a critical size before commencement of DNA synthesis. A slower growing cell will spend more time in G1 before reaching the critical mass. In contrast, the period between onset of DNA synthesis and mitosis, tau(B), is fixed. The two parameters in the model, the critical size and tau(B), were determined from eight steady-state measurements of mean cell size in a continuous hybridoma culture. Using these parameters, it was possible to predict with reasonable accuracy the transient behavior in a separate shift-up culture, i.e., a culture where cells were transferred from a lean environment to a rich environment. The implications for analyzing experimental data for animal cell culture are discussed. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 372-379, 1997.

SELECTION OF CITATIONS
SEARCH DETAIL