Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 187(10): 2485-2501.e26, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38653236

ABSTRACT

Glioma contains malignant cells in diverse states. Here, we combine spatial transcriptomics, spatial proteomics, and computational approaches to define glioma cellular states and uncover their organization. We find three prominent modes of organization. First, gliomas are composed of small local environments, each typically enriched with one major cellular state. Second, specific pairs of states preferentially reside in proximity across multiple scales. This pairing of states is consistent across tumors. Third, these pairwise interactions collectively define a global architecture composed of five layers. Hypoxia appears to drive the layers, as it is associated with a long-range organization that includes all cancer cell states. Accordingly, tumor regions distant from any hypoxic/necrotic foci and tumors that lack hypoxia such as low-grade IDH-mutant glioma are less organized. In summary, we provide a conceptual framework for the organization of cellular states in glioma, highlighting hypoxia as a long-range tissue organizer.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioblastoma/pathology , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Spatial Analysis , Transcriptome/genetics , Tumor Microenvironment , Proteomics , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Gene Expression Regulation, Neoplastic
2.
Nature ; 618(7965): 598-606, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37258682

ABSTRACT

Each tumour contains diverse cellular states that underlie intratumour heterogeneity (ITH), a central challenge of cancer therapeutics1. Dozens of recent studies have begun to describe ITH by single-cell RNA sequencing, but each study typically profiled only a small number of tumours and provided a narrow view of transcriptional ITH2. Here we curate, annotate and integrate the data from 77 different studies to reveal the patterns of transcriptional ITH across 1,163 tumour samples covering 24 tumour types. Among the malignant cells, we identify 41 consensus meta-programs, each consisting of dozens of genes that are coordinately upregulated in subpopulations of cells within many tumours. The meta-programs cover diverse cellular processes including both generic (for example, cell cycle and stress) and lineage-specific patterns that we map into 11 hallmarks of transcriptional ITH. Most meta-programs of carcinoma cells are similar to those identified in non-malignant epithelial cells, suggesting that a large fraction of malignant ITH programs are variable even before oncogenesis, reflecting the biology of their cell of origin. We further extended the meta-program analysis to six common non-malignant cell types and utilize these to map cell-cell interactions within the tumour microenvironment. In summary, we have assembled a comprehensive pan-cancer single-cell RNA-sequencing dataset, which is available through the Curated Cancer Cell Atlas website, and leveraged this dataset to carry out a systematic characterization of transcriptional ITH.


Subject(s)
Gene Expression Regulation, Neoplastic , Genetic Heterogeneity , Neoplasms , Single-Cell Gene Expression Analysis , Humans , Epithelial Cells/cytology , Epithelial Cells/metabolism , Neoplasms/classification , Neoplasms/genetics , Neoplasms/pathology , Tumor Microenvironment
3.
Cancer Cell ; 39(6): 779-792.e11, 2021 06 14.
Article in English | MEDLINE | ID: mdl-34087162

ABSTRACT

The mesenchymal subtype of glioblastoma is thought to be determined by both cancer cell-intrinsic alterations and extrinsic cellular interactions, but remains poorly understood. Here, we dissect glioblastoma-to-microenvironment interactions by single-cell RNA sequencing analysis of human tumors and model systems, combined with functional experiments. We demonstrate that macrophages induce a transition of glioblastoma cells into mesenchymal-like (MES-like) states. This effect is mediated, both in vitro and in vivo, by macrophage-derived oncostatin M (OSM) that interacts with its receptors (OSMR or LIFR) in complex with GP130 on glioblastoma cells and activates STAT3. We show that MES-like glioblastoma states are also associated with increased expression of a mesenchymal program in macrophages and with increased cytotoxicity of T cells, highlighting extensive alterations of the immune microenvironment with potential therapeutic implications.


Subject(s)
Brain Neoplasms/immunology , Brain Neoplasms/pathology , Glioblastoma/immunology , Glioblastoma/pathology , T-Lymphocytes/immunology , Tumor-Associated Macrophages/immunology , Animals , Brain Neoplasms/genetics , Cells, Cultured , Cytokine Receptor gp130/genetics , Cytokine Receptor gp130/metabolism , Cytotoxicity, Immunologic , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Humans , Leukemia Inhibitory Factor Receptor alpha Subunit/genetics , Leukemia Inhibitory Factor Receptor alpha Subunit/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Oncostatin M/metabolism , Oncostatin M Receptor beta Subunit/genetics , Oncostatin M Receptor beta Subunit/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Tumor Microenvironment , Tumor-Associated Macrophages/pathology
4.
Nat Genet ; 52(11): 1208-1218, 2020 11.
Article in English | MEDLINE | ID: mdl-33128048

ABSTRACT

Cultured cell lines are the workhorse of cancer research, but the extent to which they recapitulate the heterogeneity observed among malignant cells in tumors is unclear. Here we used multiplexed single-cell RNA-seq to profile 198 cancer cell lines from 22 cancer types. We identified 12 expression programs that are recurrently heterogeneous within multiple cancer cell lines. These programs are associated with diverse biological processes, including cell cycle, senescence, stress and interferon responses, epithelial-mesenchymal transition and protein metabolism. Most of these programs recapitulate those recently identified as heterogeneous within human tumors. We prioritized specific cell lines as models of cellular heterogeneity and used them to study subpopulations of senescence-related cells, demonstrating their dynamics, regulation and unique drug sensitivities, which were predictive of clinical response. Our work describes the landscape of heterogeneity within diverse cancer cell lines and identifies recurrent patterns of heterogeneity that are shared between tumors and specific cell lines.


Subject(s)
Cell Line, Tumor , Genetic Heterogeneity , Neoplasms/genetics , Precancerous Conditions/genetics , Cell Line, Tumor/drug effects , Cellular Senescence/genetics , Drug Screening Assays, Antitumor , Humans , RNA-Seq , Stress, Physiological/genetics , Tumor Microenvironment
5.
J Exp Med ; 216(1): 215-230, 2019 01 07.
Article in English | MEDLINE | ID: mdl-30545903

ABSTRACT

Insufficient erythropoiesis due to increased demand is usually met by hypoxia-driven up-regulation of erythropoietin (Epo). Here, we uncovered vascular endothelial growth factor (VEGF) as a novel inducer of Epo capable of increasing circulating Epo under normoxic, nonanemic conditions in a previously unrecognized reservoir of Epo-producing cells (EPCs), leading to expansion of the erythroid progenitor pool and robust splenic erythropoiesis. Epo induction by VEGF occurs in kidney, liver, and spleen in a population of Gli1+SMA+PDGFRß+ cells, a signature shared with vascular smooth muscle cells (VSMCs) derived from mesenchymal stem cell-like progenitors. Surprisingly, inhibition of PDGFRß signaling, but not VEGF signaling, abrogated VEGF-induced Epo synthesis. We thus introduce VEGF as a new player in Epo induction and perivascular Gli1+SMA+PDGFRß+ cells as a previously unrecognized EPC reservoir that could be harnessed for augmenting Epo synthesis in circumstances such as chronic kidney disease where production by canonical EPCs is compromised.


Subject(s)
Erythropoiesis , Erythropoietin/biosynthesis , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Vascular Endothelial Growth Factor A/metabolism , Animals , Cell Hypoxia , Erythroid Precursor Cells , Erythropoietin/genetics , Mice , Mice, Transgenic , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/cytology , Receptor, Platelet-Derived Growth Factor beta/genetics , Receptor, Platelet-Derived Growth Factor beta/metabolism , Signal Transduction/genetics , Stromal Cells/cytology , Stromal Cells/metabolism , Vascular Endothelial Growth Factor A/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...