Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 7: 44491, 2017 03 14.
Article in English | MEDLINE | ID: mdl-28290518

ABSTRACT

The Mediterranean Sea has been defined "under siege" because of intense pressures from multiple human activities; yet there is still insufficient information on the cumulative impact of these stressors on the ecosystem and its resources. We evaluate how the historical (1950-2011) trends of various ecosystems groups/species have been impacted by changes in primary productivity (PP) combined with fishing pressure. We investigate the whole Mediterranean Sea using a food web modelling approach. Results indicate that both changes in PP and fishing pressure played an important role in driving species dynamics. Yet, PP was the strongest driver upon the Mediterranean Sea ecosystem. This highlights the importance of bottom-up processes in controlling the biological characteristics of the region. We observe a reduction in abundance of important fish species (~34%, including commercial and non-commercial) and top predators (~41%), and increases of the organisms at the bottom of the food web (~23%). Ecological indicators, such as community biomass, trophic levels, catch and diversity indicators, reflect such changes and show overall ecosystem degradation over time. Since climate change and fishing pressure are expected to intensify in the Mediterranean Sea, this study constitutes a baseline reference for stepping forward in assessing the future management of the basin.


Subject(s)
Climate Change , Conservation of Natural Resources , Ecosystem , Fishes/physiology , Animals , Biodiversity , Fisheries , Food Chain , Human Activities , Humans , Mediterranean Sea
2.
Science ; 322(5902): 717-20, 2008 Oct 31.
Article in English | MEDLINE | ID: mdl-18974347

ABSTRACT

Fundamental to our understanding of erosional and transport phenomena in earth-surface dynamics and engineering is knowledge of the conditions under which sediment motion will begin when subjected to turbulent flow. The onset criterion currently in use emphasizes the time-averaged boundary shear stress and therefore is incapable of accounting for the fluctuating forces encountered in turbulent flows. We have validated through laboratory experiments and analytical formulation of the problem a criterion based upon the impulse imparted to a sediment grain. We demonstrate that in addition to the magnitude of the instantaneous turbulent forces applied on a sediment grain, the duration of these turbulent forces is also important in determining the sediment grain's threshold of motion, and that their product, or impulse, is better suited for specifying such conditions.

SELECTION OF CITATIONS
SEARCH DETAIL