Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Anticancer Res ; 44(6): 2445-2451, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821626

ABSTRACT

BACKGROUND/AIM: Non-small cell lung cancer (NSCLC) is the deadliest form of cancer worldwide. Understanding the mechanisms of lung cancer development is vital for targeted therapy advancements. This article explores the little-known role of the guanylate kinase-associated protein (GKAP), encoded by the Disks large-associated protein 1 (DLGAP1) gene, in NSCLC along with assessing microRNA-30a-5p's influence on DLGAP1 gene expression in the A549 cell line. MATERIALS AND METHODS: Experiments were conducted on A549 cells transfected with synthetic oligonucleotides. The luciferase assay was employed to confirm the binding site of miR-30a-5p to the 3'UTR of DLGAP1 mRNA. The role of miRNA-30a-5p mimic in regulating potential target gene expression at the protein and mRNA levels was studied by performing RT-qPCR and western blot analyses. The effects of DLGAP1 knockdown and miRNA-30a-5p mimic on cell viability and the cell cycle were evaluated using the MTT test and flow cytometry with annexin/iodide cell staining. RESULTS: The luciferase assay indicated that miR-30a-5p has the ability to bind to the 3'UTR of DLGAP1 mRNA. RT-qPCR revealed that the overexpression of miR-30a-5p down-regulates DLGAP1 mRNA. Western blot analysis indicated that miR-30a-5p slightly reduces the level of the GKAP protein. Knockdown of DLGAP1 with synthetic oligonucleotides, as well as transfection with a miR-30a-5p mimic, significantly attenuates cell proliferation and increases the number of cells in the early and late stages of apoptosis. CONCLUSION: Our findings reveal the antiproliferative effect of miR-30a-5p and DLGAP1 gene knockdown on A549 cancer cells, implying that these elements could be considered as therapeutic targets for personalized medicine in NSCLC patients.


Subject(s)
3' Untranslated Regions , Carcinoma, Non-Small-Cell Lung , Cell Proliferation , Gene Expression Regulation, Neoplastic , Lung Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Cell Proliferation/genetics , A549 Cells , 3' Untranslated Regions/genetics , Apoptosis/genetics , SAP90-PSD95 Associated Proteins/genetics , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Cell Survival/genetics , Cell Line, Tumor
2.
Pathogens ; 12(3)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36986285

ABSTRACT

The eradication of smallpox was an enormous achievement due to the global vaccination program launched by World Health Organization. The cessation of the vaccination program led to steadily declining herd immunity against smallpox, causing a health emergency of global concern. The smallpox vaccines induced strong, humoral, and cell-mediated immune responses, protecting for decades after immunization, not only against smallpox but also against other zoonotic orthopoxviruses that now represent a significant threat to public health. Here we review the major aspects regarding orthopoxviruses' zoonotic infections, factors responsible for viral transmissions, as well as the emerging problem of the increased number of monkeypox cases recently reported. The development of prophylactic measures against poxvirus infections, especially the current threat caused by the monkeypox virus, requires a profound understanding of poxvirus immunobiology. The utilization of animal and cell line models has provided good insight into host antiviral defenses as well as orthopoxvirus evasion mechanisms. To survive within a host, orthopoxviruses encode a large number of proteins that subvert inflammatory and immune pathways. The circumvention of viral evasion strategies and the enhancement of major host defenses are key in designing novel, safer vaccines, and should become the targets of antiviral therapies in treating poxvirus infections.

3.
Int J Mol Sci ; 25(1)2023 Dec 31.
Article in English | MEDLINE | ID: mdl-38203729

ABSTRACT

Ectromelia virus (ECTV) is a causative agent of mousepox. It provides a suitable model for studying the immunobiology of orthopoxviruses, including their interaction with the host cell cytoskeleton. As professional antigen-presenting cells, dendritic cells (DCs) control the pericellular environment, capture antigens, and present them to T lymphocytes after migration to secondary lymphoid organs. Migration of immature DCs is possible due to the presence of specialized adhesion structures, such as podosomes or focal adhesions (FAs). Since assembly and disassembly of adhesive structures are highly associated with DCs' immunoregulatory and migratory functions, we evaluated how ECTV infection targets podosomes and FAs' organization and formation in natural-host bone marrow-derived DCs (BMDC). We found that ECTV induces a rapid dissolution of podosomes at the early stages of infection, accompanied by the development of larger and wider FAs than in uninfected control cells. At later stages of infection, FAs were predominantly observed in long cellular extensions, formed extensively by infected cells. Dissolution of podosomes in ECTV-infected BMDCs was not associated with maturation and increased 2D cell migration in a wound healing assay; however, accelerated transwell migration of ECTV-infected cells towards supernatants derived from LPS-conditioned BMDCs was observed. We suggest that ECTV-induced changes in the spatial organization of adhesive structures in DCs may alter the adhesiveness/migration of DCs during some conditions, e.g., inflammation.


Subject(s)
Ectromelia virus , Ectromelia, Infectious , Animals , Mice , Adhesives , Adhesiveness , Dendritic Cells
4.
Pathogens ; 11(8)2022 Aug 03.
Article in English | MEDLINE | ID: mdl-36014997

ABSTRACT

Mitochondria are key cellular organelles responsible for many essential functions, including ATP production, ion homeostasis and apoptosis induction. Recent studies indicate their significant role during viral infection. In the present study, we examined the effects of equine herpesvirus type 1 (EHV-1) infection on the morphology and mitochondrial function in primary murine neurons in vitro. We used three EHV-1 strains: two non-neuropathogenic (Jan-E and Rac-H) and one neuropathogenic (EHV-1 26). The organization of the mitochondrial network during EHV-1 infection was assessed by immunofluorescence. To access mitochondrial function, we analyzed reactive oxygen species (ROS) production, mitophagy, mitochondrial inner-membrane potential, mitochondrial mass, and mitochondrial genes' expression. Changes in mitochondria morphology during infection suggested importance of their perinuclear localization for EHV-1 replication. Despite these changes, mitochondrial functions were preserved. For all tested EHV-1 strains, the similarities in the increased fold expression were detected only for COX18, Sod2, and Tspo. For non-neuropathogenic strains (Jan-E and Rac-H), we detected mainly changes in the expression of genes related to mitochondrial morphology and transport. The results indicate that mitochondria play an important role during EHV-1 replication in cultured neurons and undergo specific morphological and functional modifications.

5.
Int J Mol Sci ; 23(13)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35806271

ABSTRACT

Epstein-Barr virus (EBV), the representative of the Herpesviridae family, is a pathogen extensively distributed in the human population. One of its most characteristic features is the capability to establish latent infection in the host. The infected cells serve as a sanctuary for the dormant virus, and therefore their desensitization to apoptotic stimuli is part of the viral strategy for long-term survival. For this reason, EBV encodes a set of anti-apoptotic products. They may increase the viability of infected cells and enhance their resistance to chemotherapy, thereby contributing to the development of EBV-associated diseases, including Burkitt's lymphoma (BL), Hodgkin's lymphoma (HL), gastric cancer (GC), nasopharyngeal carcinoma (NPC) and several other malignancies. In this paper, we have described the molecular mechanism of anti-apoptotic actions of a set of EBV proteins. Moreover, we have reviewed the pro-survival role of non-coding viral transcripts: EBV-encoded small RNAs (EBERs) and microRNAs (miRNAs), in EBV-carrying malignant cells. The influence of EBV on the expression, activity and/or intracellular distribution of B-cell lymphoma 2 (Bcl-2) protein family members, has been presented. Finally, we have also discussed therapeutic perspectives of targeting viral anti-apoptotic products or their molecular partners.


Subject(s)
Epstein-Barr Virus Infections , Nasopharyngeal Neoplasms , Apoptosis , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Nuclear Antigens , Herpesvirus 4, Human , Humans
6.
Animals (Basel) ; 12(2)2022 Jan 08.
Article in English | MEDLINE | ID: mdl-35049768

ABSTRACT

The gastrointestinal tract, which is constantly exposed to a multitude of stimuli, is considered responsible for maintaining the homeostasis of the host. It is inhabited by billions of microorganisms, the gut microbiota, which form a mutualistic relationship with the host. Although the microbiota is generally recognized as beneficial, at the same time, together with pathogens, they are a permanent threat to the host. Various populations of epithelial cells provide the first line of chemical and physical defense against external factors acting as the interface between luminal microorganisms and immunocompetent cells in lamina propria. In this review, we focus on some essential, innate mechanisms protecting mucosal integrity, thus responsible for maintaining intestine homeostasis. The characteristics of decisive cell populations involved in maintaining the barrier arrangement, based on mucus secretion, formation of intercellular junctions as well as production of antimicrobial peptides, responsible for shaping the gut microbiota, are presented. We emphasize the importance of cross-talk between gut microbiota and epithelial cells as a factor vital for the maintenance of the homeostasis of the GI tract. Finally, we discuss how the imbalance of these regulations leads to the compromised barrier integrity and dysbiosis considered to contribute to inflammatory disorders and metabolic diseases.

7.
Int J Mol Sci ; 22(4)2021 Feb 16.
Article in English | MEDLINE | ID: mdl-33669408

ABSTRACT

Bcl-xL represents a family of proteins responsible for the regulation of the intrinsic apoptosis pathway. Due to its anti-apoptotic activity, Bcl-xL co-determines the viability of various virally infected cells. Their survival may determine the effectiveness of viral replication and spread, dynamics of systemic infection, and viral pathogenesis. In this paper, we have reviewed the role of Bcl-xL in the context of host infection by eight different RNA and DNA viruses: hepatitis B virus (HBV), hepatitis C virus (HCV), human immunodeficiency virus (HIV), influenza A virus (IAV), Epstein-Barr virus (EBV), human T-lymphotropic virus type-1 (HTLV-1), Maraba virus (MRBV), Schmallenberg virus (SBV) and coronavirus (CoV). We have described an influence of viral infection on the intracellular level of Bcl-xL and discussed the impact of Bcl-xL-dependent cell survival control on infection-accompanying pathogenic events such as tissue damage or oncogenesis. We have also presented anti-viral treatment strategies based on the pharmacological regulation of Bcl-xL expression or activity.


Subject(s)
Apoptosis , Virus Diseases/metabolism , bcl-X Protein/metabolism , Animals , Cell Survival , Host-Pathogen Interactions , Humans , Virus Diseases/pathology , Virus Replication , Viruses/metabolism , bcl-X Protein/analysis
8.
Materials (Basel) ; 14(3)2021 Jan 30.
Article in English | MEDLINE | ID: mdl-33573304

ABSTRACT

This study investigates the effect of graphene scaffold on morphology, viability, cytoskeleton, focal contacts, mitochondrial network morphology and activity in BALB/3T3 fibroblasts and provides new data on biocompatibility of the "graphene-family nanomaterials". We used graphene monolayer applied onto glass cover slide by electrochemical delamination method and regular glass cover slide, as a reference. The morphology of fibroblasts growing on graphene was unaltered, and the cell viability was 95% compared to control cells on non-coated glass slide. There was no significant difference in the cell size (spreading) between both groups studied. Graphene platform significantly increased BALB/3T3 cell mitochondrial activity (WST-8 test) compared to glass substrate. To demonstrate the variability in focal contacts pattern, the effect of graphene on vinculin was examined, which revealed a significant increase in focal contact size comparing to control-glass slide. There was no disruption in mitochondrial network morphology, which was branched and well connected in relation to the control group. Evaluation of the JC-1 red/green fluorescence intensity ratio revealed similar levels of mitochondrial membrane potential in cells growing on graphene-coated and uncoated slides. These results indicate that graphene monolayer scaffold is cytocompatible with connective tissue cells examined and could be beneficial for tissue engineering therapy.

9.
Front Cell Neurosci ; 14: 544612, 2020.
Article in English | MEDLINE | ID: mdl-33281554

ABSTRACT

TLR3 provides immediate type I IFN response following entry of stimulatory PAMPs into the CNS, as it is in HSV infection. The receptor plays a vital role in astrocytes, contributing to rapid infection sensing and suppression of viral replication, precluding the spread of virus beyond neurons. The route of TLR3 mobilization culminating in the receptor activation remains unexplained. In this research, we investigated the involvement of various types of endosomes in the regulation of the TLR3 mobility in C8-D1A murine astrocyte cell line. TLR3 was transported rapidly to early EEA1-positive endosomes as well as LAMP1-lysosomes following stimulation with the poly(I:C). Later, TLR3 largely associated with late Rab7-positive endosomes. Twenty-four hours after stimulation, TLR3 co-localized with LAMP1 abundantly in lysosomes of astrocytes. TLR3 interacted with poly(I:C) intracellularly from 1 min to 8 h following cell stimulation. We detected TLR3 on the surface of astrocytes indicating constitutive expression, which increased after poly(I:C) stimulation. Our findings contribute to the understanding of cellular modulation of TLR3 trafficking. Detailed analysis of the TLR3 transportation pathway is an important component in disclosing the fate of the receptor in HSV-infected CNS and may help in the search for rationale therapeutics to control the replication of neuropathic viruses.

10.
Immunol Invest ; 49(3): 232-248, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31240969

ABSTRACT

Ectromelia virus (ECTV), an orthopoxvirus, undergoes productive replication in conventional dendritic cells (cDCs), resulting in the inhibition of their innate and adaptive immune functions. ECTV replication rate in cDCs is increased due to downregulation of the expression of cathepsins - cystein proteases that orchestrate several steps during DC maturation. Therefore, this study was aimed to determine if downregulation of cathepsins, such as B, L or S, disrupts cDC capacity to induce activating signals in T cells or whether infection of cDCs with ECTV further weakens their functions as antigen-presenting cells. Our results showed that cDCs treated with siRNA against cathepsin B, L and S synthesize similar amounts of pro-inflammatory cytokines and exhibit comparable ability to mature and stimulate alloreactive CD4+ T cells, as untreated wild type (WT) cells. Moreover, ECTV inhibitory effect on cDC innate and adaptive immune functions, observed especially after LPS treatment, was comparable in both cathepsin-silenced and WT cells. Taken together, the absence of cathepsins B, L and S has minimal, if any, impact on the inhibitory effect of ECTV on cDC immune functions. We assume that the virus-mediated inhibition of cathepsin expression in cDCs represents more a survival mechanism than an immune evasion strategy.


Subject(s)
Cathepsins/deficiency , Dendritic Cells/immunology , Ectromelia virus/physiology , Animals , CD4-Positive T-Lymphocytes/immunology , Cathepsins/genetics , Cathepsins/metabolism , Cell Differentiation/immunology , Cell Proliferation , Cells, Cultured , Cytokines/metabolism , Dendritic Cells/metabolism , Dendritic Cells/virology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Th1-Th2 Balance
11.
Arch Immunol Ther Exp (Warsz) ; 67(6): 401-414, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31324924

ABSTRACT

Poxviruses utilize multiple strategies to prevent activation of extrinsic and intrinsic apoptotic pathways for successful replication. Mitochondrial heat shock proteins (mtHsps), especially Hsp60 and its cofactor Hsp10, are engaged in apoptosis regulation; however, until now, the influence of poxviruses on mtHsps has never been studied. We used highly infectious Moscow strain of ectromelia virus (ECTV) to investigate the mitochondrial heat shock response and apoptotic potential in permissive L929 fibroblasts. Our results show that ECTV-infected cells exhibit mostly mitochondrial localization of Hsp60 and Hsp10, and show overexpression of both proteins during later stages of infection. ECTV infection has only moderate effect on the electron transport chain subunit expression. Moreover, increase of mtHsp amounts is accompanied by lack of apoptosis, and confirmed by reduced level of pro-apoptotic Bax protein and elevated levels of anti-apoptotic Bcl-2 and Bcl-xL proteins. Taken together, we show a positive relationship between increased levels of Hsp60 and Hsp10 and decreased apoptotic potential of L929 fibroblasts, and further hypothesize that Hsp60 and/or its cofactor play important roles in maintaining protein homeostasis in mitochondria for promotion of cell survival allowing efficient replication of ECTV.


Subject(s)
Chaperonin 10/metabolism , Chaperonin 60/metabolism , Ectromelia virus/physiology , Ectromelia, Infectious/immunology , Fibroblasts/physiology , Heat-Shock Response/immunology , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Animals , Apoptosis , Cell Line , Fibroblasts/virology , Gene Expression Regulation , Immune Evasion , Mice , Protein Transport , Proto-Oncogene Proteins c-bcl-2/metabolism , Virulence , Virus Replication
12.
BMC Microbiol ; 19(1): 92, 2019 05 10.
Article in English | MEDLINE | ID: mdl-31077130

ABSTRACT

BACKGROUND: Cathepsins are a group of endosomal proteases present in many cells including dendritic cells (DCs). The activity of cathepsins is regulated by their endogenous inhibitors - cystatins. Cathepsins are crucial to antigen processing during viral and bacterial infections, and as such are a prerequisite to antigen presentation in the context of major histocompatibility complex class I and II molecules. Due to the involvement of DCs in both innate and adaptive immune responses, and the quest to understand the impact of poxvirus infection on host cells, we investigated the influence of ectromelia virus (ECTV) infection on cathepsin and cystatin levels in murine conventional DCs (cDCs). ECTV is a poxvirus that has evolved many mechanisms to avoid host immune response and is able to replicate productively in DCs. RESULTS: Our results showed that ECTV-infection of JAWS II DCs and primary murine GM-CSF-derived bone marrow cells down-regulated both mRNA and protein of cathepsin B, L and S, and cystatin B and C, particularly during the later stages of infection. Moreover, the activity of cathepsin B, L and S was confirmed to be diminished especially at later stages of infection in JAWS II cells. Consequently, ECTV-infected DCs had diminished ability to endocytose and process a soluble antigen. Close examination of cellular protein distribution showed that beginning from early stages of infection, the remnants of cathepsin L and cystatin B co-localized and partially co-localized with viral replication centers (viral factories), respectively. Moreover, viral yield increased in cDCs treated with siRNA against cathepsin B, L or S and subsequently infected with ECTV. CONCLUSIONS: Taken together, our results indicate that infection of cDCs with ECTV suppresses cathepsins and cystatins, and alters their cellular distribution which impairs the cDC function. We propose this as an additional viral strategy to escape immune responses, enabling the virus to replicate effectively in infected cells.


Subject(s)
Cathepsins/genetics , Cystatins/genetics , Dendritic Cells/virology , Ectromelia virus/physiology , Animals , Dendritic Cells/immunology , Down-Regulation , Endosomes/immunology , Endosomes/virology , Gene Knockdown Techniques , Male , Mice , Mice, Inbred C57BL , RNA, Small Interfering , Virus Replication
13.
Oxid Med Cell Longev ; 2019: 6927380, 2019.
Article in English | MEDLINE | ID: mdl-31089414

ABSTRACT

Toll-like receptors (TLRs) sense the presence of pathogen-associated molecular patterns. Nevertheless, the mechanisms modulating TLR-triggered innate immune responses are not yet fully understood. Complex regulatory systems exist to appropriately direct immune responses against foreign or self-nucleic acids, and a critical role of hepatocyte growth factor-regulated tyrosine kinase substrate (HRS), endosomal sorting complex required for transportation-0 (ESCRT-0) subunit, has recently been implicated in the endolysosomal transportation of TLR7 and TLR9. We investigated the involvement of Syk, Hrs, and STAM in the regulation of the TLR3 signaling pathway in a murine astrocyte cell line C8-D1A following cell stimulation with a viral dsRNA mimetic. Our data uncover a relationship between TLR3 and ESCRT-0, point out Syk as dsRNA-activated kinase, and suggest the role for Syk in mediating TLR3 signaling in murine astrocytes. We show molecular events that occur shortly after dsRNA stimulation of astrocytes and result in Syk Tyr-342 phosphorylation. Further, TLR3 undergoes proteolytic processing; the resulting TLR3 N-terminal form interacts with Hrs. The knockdown of Syk and Hrs enhances TLR3-mediated antiviral response in the form of IFN-ß, IL-6, and CXCL8 secretion. Understanding the role of Syk and Hrs in TLR3 immune responses is of high importance since activation and precise execution of the TLR3 signaling pathway in the brain seem to be particularly significant in mounting an effective antiviral defense. Infection of the brain with herpes simplex type 1 virus may increase the secretion of amyloid-ß by neurons and astrocytes and be a causal factor in degenerative diseases such as Alzheimer's disease. Errors in TLR3 signaling, especially related to the precise regulation of the receptor transportation and degradation, need careful observation as they may disclose foundations to identify novel or sustain known therapeutic targets.


Subject(s)
Antiviral Agents/metabolism , Astrocytes/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Phosphoproteins/metabolism , Syk Kinase/metabolism , Toll-Like Receptor 3/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Line , Enzyme Activation/drug effects , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-7/metabolism , Ligands , Mice , NF-kappa B/metabolism , Phosphorylation/drug effects , Phosphotyrosine/metabolism , Poly I-C/pharmacology , Protein Binding/drug effects , Signal Transduction/drug effects , Toll-Like Receptor 3/chemistry , Up-Regulation/drug effects
14.
Arch Virol ; 164(2): 559-565, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30374707

ABSTRACT

Ectromelia virus (ECTV) is an orthopoxvirus that productively replicates in dendritic cells (DCs), but its influence on the microtubule (MT) cytoskeleton in DCs is not known. Here, we show that ECTV infection of primary murine granulocyte-macrophage colony stimulating factor-derived bone marrow cells (GM-BM) downregulates numerous genes engaged in MT cytoskeleton organization and dynamics. In infected cells, the MT cytoskeleton undergoes dramatic rearrangement and relaxation, accompanied by disappearance of the microtubule organizing centre (MTOC) and increased acetylation and stabilization of MTs, which are exploited by progeny virions for intracellular transport. This indicates a strong ability of ECTV to subvert the MT cytoskeleton of highly specialized immune cells.


Subject(s)
Cytoskeleton/metabolism , Dendritic Cells/metabolism , Ectromelia virus/physiology , Ectromelia, Infectious/metabolism , Macrophages/metabolism , Microtubule-Organizing Center/metabolism , Tubulin/metabolism , Acetylation , Animals , Cell Line , Ectromelia, Infectious/virology , Host-Pathogen Interactions , Mice , Mice, Inbred BALB C , Microtubules/metabolism
15.
Cent Eur J Immunol ; 43(4): 363-370, 2018.
Article in English | MEDLINE | ID: mdl-30799983

ABSTRACT

The aim of the study was to evaluate the influence of ectromelia virus (ECTV) infection on actin cytoskeleton rearrangement in immune cells, such as macrophages and dendritic cells (DCs). Using scanning electron and fluorescence microscopy analysis we observed the presence of long actin-based cellular extensions, formed by both types of immune cells at later stages of infection with ECTV. Such extensions contained straight tubulin filaments and numerous punctuate mitochondria. Moreover, these long cellular projections extended to a certain length and formed convex structures termed "cytoplasmic packets". These structures contained numerous viral particles and presumably were sites of progeny virions' release via budding. Further, discrete mitochondria and separated tubulin filaments that formed a scaffold for accumulated mitochondria were visible within cytoplasmic packets. ECTV-induced long actin-based protrusions resemble "cytoplasmic corridors" and probably participate in virus dissemination. Our data demonstrate the incredible capacity for adaptation of ECTV to its natural host immune cells, in which it can survive, replicate and induce effective mechanisms for viral spread and dissemination.

SELECTION OF CITATIONS
SEARCH DETAIL
...