Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
FEMS Microbiol Rev ; 48(1)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38216518

ABSTRACT

The potential for microbial activity to occur within the engineered barrier system (EBS) of a geological disposal facility (GDF) for radioactive waste is acknowledged by waste management organizations as it could affect many aspects of the safety functions of a GDF. Microorganisms within an EBS will be exposed to changing temperature, pH, radiation, salinity, saturation, and availability of nutrient and energy sources, which can limit microbial survival and activity. Some of the limiting conditions are incorporated into GDF designs for safety reasons, including the high pH of cementitious repositories, the limited pore space of bentonite-based repositories, or the high salinity of GDFs in evaporitic geologies. Other environmental conditions such as elevated radiation, temperature, and desiccation, arise as a result of the presence of high heat generating waste (HHGW). Here, we present a comprehensive review of how environmental conditions in the EBS may limit microbial activity, covering HHGW and lower heat generating waste (LHGW) in a range of geological environments. We present data from the literature on the currently recognized limits to life for each of the environmental conditions described above, and nutrient availability to establish the potential for life in these environments. Using examples where each variable has been modelled for a particular GDF, we outline the times and locations when that variable can be expected to limit microbial activity. Finally, we show how this information for multiple variables can be used to improve our understanding of the potential for microbial activity to occur within the EBS of a GDF and, more broadly, to understand microbial life in changing environments exposed to multiple extreme conditions.


Subject(s)
Environmental Microbiology , Extreme Environments , Radioactive Waste , Radioactive Waste/analysis
2.
Microorganisms ; 7(2)2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30769950

ABSTRACT

Hydrogen is a key energy source for subsurface microbial processes, particularly in subsurface environments with limited alternative electron donors, and environments that are not well connected to the surface. In addition to consumption of hydrogen, microbial processes such as fermentation and nitrogen fixation produce hydrogen. Hydrogen is also produced by a number of abiotic processes including radiolysis, serpentinization, graphitization, and cataclasis of silicate minerals. Both biotic and abiotically generated hydrogen may become available for consumption by microorganisms, but biotic production and consumption are usually tightly coupled. Understanding the microbiology of hydrogen cycling is relevant to subsurface engineered environments where hydrogen-cycling microorganisms are implicated in gas consumption and production and corrosion in a number of industries including carbon capture and storage, energy gas storage, and radioactive waste disposal. The same hydrogen-cycling microorganisms and processes are important in natural sites with elevated hydrogen and can provide insights into early life on Earth and life on other planets. This review draws together what is known about microbiology in natural environments with elevated hydrogen, and highlights where similar microbial populations could be of relevance to subsurface industry.

SELECTION OF CITATIONS
SEARCH DETAIL
...