Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 12(4)2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32326336

ABSTRACT

The histone demethylase UTX (gene: KDM6A) directs cell and tissue differentiation during development. Deleterious mutations in KDM6A occur in many human cancers, most frequently in urothelial carcinoma. The consequences of these mutations are poorly understood; plausibly, they may disturb urothelial differentiation. We therefore investigated the effects of UTX siRNA-mediated knockdown in two in vitro models of urothelial differentiation; namely, primary cultures of urothelial epithelial cells treated with troglitazone and PD153035 and the immortalized urothelial cell line HBLAK treated with high calcium and serum. In both models, efficient UTX knockdown did not block morphological and biochemical differentiation. An apparent delay was due to a cytotoxic effect on the cell cultures before the initiation of differentiation, which induced apoptosis partly in a p53-dependent manner. As a consequence, slowly cycling, smaller, KRT14high precursor cells in the HBLAK cell line were enriched at the expense of more differentiated, larger, proliferating KRT14low cells. UTX knockdown induced apoptosis and enriched KRT14high cells in the BFTC-905 papillary urothelial carcinoma cell line as well. Our findings suggest an explanation for the frequent occurrence of KDM6A mutations across all stages and molecular subtypes of urothelial carcinoma, whereby loss of UTX function does not primarily impede later stages of urothelial differentiation, but favors the expansion of precursor populations to provide a reservoir of potential tumor-initiating cells.

2.
Cancers (Basel) ; 11(4)2019 Apr 04.
Article in English | MEDLINE | ID: mdl-30987376

ABSTRACT

The histone demethylase Ubiquitously Transcribed Tetratricopeptide Repeat Protein X-Linked (UTX/KDM6A) demethylates H3K27me2/3 at genes and enhancers and is often inactivated by mutations in urothelial carcinoma (UC). The consequences of its inactivation are however poorly understood. We have investigated the consequences of moderate UTX overexpression across a range of UC cell lines with or without mutations in KDM6A or its interaction partners and in a normal control cell line. Effects on cell proliferation, especially long-term, varied dramatically between the cell lines, ranging from deleterious to beneficial. Similarly, effects on global gene expression determined by RNA-Seq were variable with few overlapping up- or downregulated genes between the cell lines. Our data indicate that UTX does not act in a uniform fashion in UC. Rather, its effect depends on several contingencies including, prominently, the status of KMT2C and KMT2D which interact with UTX in the COMPASS complex. In particular, we provide evidence that these factors determine the amount of nuclear UTX.

3.
Int J Cancer ; 145(3): 614-620, 2019 08 01.
Article in English | MEDLINE | ID: mdl-30628063

ABSTRACT

The lysine-specific demethylase 6A/UTX (gene name KDM6A) acts as a component of the COMPASS complex to control gene activation. UTX demethylates H3K27me2/3 at genes and enhancers. Deleterious mutations in KDM6A are found in many cancer types, prominently urothelial carcinoma and certain T-cell leukemias. In certain cancers, however, UTX supports oncogenic transcription factors, e.g. steroid hormone receptors in breast and prostate cancer. In fetal development, UTX regulates lineage choice and cell differentiation. Analogously, loss of UTX function in cancer may lead to metaplasia or impede differentiation. Likely because its function is contingent on its interacting transcription factors, the effects of UTX inactivation are not uniform and require detailed investigation in each cancer type. In urothelial carcinoma, in particular, the functional consequences of the frequent mutations in KDM6A and other COMPASS component genes are poorly understood. Nevertheless, UTX inactivation appears to sensitize many cancers to inhibitors of the H3K27 methyltransferase EZH2. Conversely, inhibitors of UTX enzymatic activity may be applicable in cancers with an oncogenic UTX function. Intriguingly, the fact that KDM6A is localized on the X-chromosome, but both copies are expressed, may account for gender-specific differences in cancer susceptibility. In conclusion, despite recent progress, many open questions need to be addressed, most importantly, the detailed mechanisms by which KDM6A inactivation promotes various cancers, but also with which proteins UTX interacts in and apart from the COMPASS complex, and to which extent its catalytic function is required for its tumor-suppressive function.


Subject(s)
Histone Demethylases/metabolism , Neoplasms/enzymology , Animals , Humans , Neoplasms/pathology
4.
Sci Rep ; 6: 36792, 2016 11 11.
Article in English | MEDLINE | ID: mdl-27833095

ABSTRACT

TGR5 is the first identified bile acid-sensing G-protein coupled receptor, which has emerged as a potential therapeutic target for metabolic disorders. So far, structural and multimerization properties are largely unknown for TGR5. We used a combined strategy applying cellular biology, Multiparameter Image Fluorescence Spectroscopy (MFIS) for quantitative FRET analysis, and integrative modelling to obtain structural information about dimerization and higher-order oligomerization assemblies of TGR5 wildtype (wt) and Y111 variants fused to fluorescent proteins. Residue 111 is located in transmembrane helix 3 within the highly conserved ERY motif. Co-immunoprecipitation and MFIS-FRET measurements with gradually increasing acceptor to donor concentrations showed that TGR5 wt forms higher-order oligomers, a process disrupted in TGR5 Y111A variants. From the concentration dependence of the MFIS-FRET data we conclude that higher-order oligomers - likely with a tetramer organization - are formed from dimers, the smallest unit suggested for TGR5 Y111A variants. Higher-order oligomers likely have a linear arrangement with interaction sites involving transmembrane helix 1 and helix 8 as well as transmembrane helix 5. The latter interaction is suggested to be disrupted by the Y111A mutation. The proposed model of TGR5 oligomer assembly broadens our view of possible oligomer patterns and affinities of class A GPCRs.


Subject(s)
Protein Multimerization , Receptors, G-Protein-Coupled/metabolism , Amino Acid Substitution , Animals , Dogs , Fluorescence Resonance Energy Transfer , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Madin Darby Canine Kidney Cells , Models, Molecular , Protein Structure, Quaternary , Protein Transport , Receptors, G-Protein-Coupled/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Single-Cell Analysis , Spectrometry, Fluorescence
5.
Eur Urol ; 68(1): 3-4, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25791514

ABSTRACT

The Notch pathway, which controls stem cell maintenance and cell differentiation, is activated in certain cancers and therefore constitutes a therapeutic target. Especially in invasive urothelial carcinoma, the pathway is inactivated instead, and drugs inhibiting Notch signaling are likely contra-indicated.


Subject(s)
Receptors, Notch/metabolism , Tumor Suppressor Proteins/metabolism , Urinary Bladder Neoplasms/metabolism , Animals , Female , Humans , Male
6.
Tumour Biol ; 36(5): 3293-300, 2015 May.
Article in English | MEDLINE | ID: mdl-25566959

ABSTRACT

Resistance to chemotherapy is a major problem in the treatment of urothelial bladder cancer. Several mechanisms have been identified in resistance to doxorubicin by analysis of resistant urothelial carcinoma (UC) cell lines, prominently activation of drug efflux pumps and diminished apoptosis. We have derived a new doxorubicin-resistant cell line from BFTC-905 UC cells, designated BFTC-905-DOXO-II. A doxorubicin-responsive green fluorescent protein (GFP) reporter assay indicated that resistance in BFTC-905-DOXO-II was not due to increased drug efflux pump activity, whereas caspase-3/7 activation was indeed diminished. Gene expression microarray analysis revealed changes in proapoptotic and antiapoptotic genes, but additionally induction of the mevalonate (cholesterol) biosynthetic pathway. Treatment with simvastatin restored sensitivity of BFTC-905-DOXO-II to doxorubicin to that of the parental cell line. Induction of the mevalonate pathway has been reported as a mechanism of chemoresistance in other cancers; this is the first observation in bladder cancer. Combinations of statins with doxorubicin-containing chemotherapy regimens may provide a therapeutic advantage in such cases.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Doxorubicin/pharmacology , Drug Resistance, Neoplasm , Urinary Bladder Neoplasms/pathology , Biosynthetic Pathways , Cell Line, Tumor/drug effects , Cell Survival/drug effects , Drug Synergism , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Inhibitory Concentration 50 , Mevalonic Acid/metabolism , Simvastatin/pharmacology , Transcriptome
7.
Int J Mol Sci ; 15(11): 20500-17, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-25387078

ABSTRACT

Genetic and epigenetic changes in the mitogen activated protein kinase (MAPK) signaling render urothelial cancer a potential target for tyrosine kinase inhibitor (TKI) treatment. However, clinical trials of several TKIs failed to prove efficacy. In this context, we investigated changes in MAPK signaling activity, downstream apoptotic regulators and changes in cell cycle distribution in different urothelial cancer cell lines (UCCs) upon treatment with the multikinase inhibitor sorafenib. None of the classical sorafenib targets (vascular endothelial growth factor receptor 1/-receptor 2, VEGFR1/-R2; platelet-derived growth factor receptor α/-receptor ß, PDGFR-α/-ß; c-KIT) was expressed at significant levels leaving RAF proteins as its likely molecular target. Low sorafenib concentrations paradoxically increased cell viability, whereas higher concentrations induced G1 arrest and eventually apoptosis. MAPK signaling remained partly active after sorafenib treatment, especially in T24 cells with an oncogenic HRAS mutation. AKT phosphorylation was increased, suggesting compensatory activation of the phosphatidylinositol-3-kinase (PI3K) pathway. Sorafenib regularly down regulated the anti-apoptotic myeloid cell leukemia 1 (Mcl-1) protein, but combinatorial treatment with ABT-737 targeting other B-cell lymphoma 2 (Bcl-2) family proteins did not result in synergistic effects. In summary, efficacy of sorafenib in urothelial cancer cell lines appears hampered by limited effects on MAPK signaling, crosstalk with further cancer pathways and an anti-apoptotic state of UCCs. These observations may account for the lack of efficacy of sorafenib in clinical trials and should be considered more broadly in the development of signaling pathway inhibitors for drug therapy in urothelial carcinoma.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm , MAP Kinase Signaling System/drug effects , Niacinamide/analogs & derivatives , Phenylurea Compounds/pharmacology , Protein Kinase Inhibitors/pharmacology , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder/pathology , Apoptosis/drug effects , Cell Line, Tumor , Humans , Niacinamide/pharmacology , Sorafenib , Urinary Bladder/drug effects , Urinary Bladder/enzymology , Urinary Bladder Neoplasms/enzymology , Urinary Bladder Neoplasms/pathology , Urothelium/drug effects , Urothelium/pathology
8.
BMC Cancer ; 14: 628, 2014 Aug 29.
Article in English | MEDLINE | ID: mdl-25167871

ABSTRACT

BACKGROUND: Notch signalling regulates cell fate in most tissues, promoting precursor cell proliferation in some, but differentiation in others. Accordingly, downregulation or overactivity variously contributes to cancer development. So far, little is known about Notch pathway activity and function in the normal urothelium and in urothelial carcinoma (UC). We have therefore investigated expression of Notch pathway components in UC tissues and cell lines and studied the function of one receptor, NOTCH1, in detail. METHODS: Expression of canonical Notch pathway components were studied in UC and normal bladder tissues by immunohistochemistry and quantitative RT-PCR and in UC cell lines and normal cultured urothelial cells by qRT-PCR, immunocytochemistry and Western blotting. Pathway activity was measured by reporter gene assays. Its influence on cell proliferation was investigated by γ-secretase inhibition. Effects of NOTCH1 restoration were followed by measuring cell cycle distribution, proliferation, clonogenicity and nuclear morphology. RESULTS: NOTCH1 and its ligand, DLL1, were expressed at plasma membranes and in the cytoplasm of cells in the upper normal urothelium layer, but became downregulated in UC tissues, especially in high-stage tumours. In addition, the proteins were often delocalized intracellularly. According differences were observed in UC cell lines compared to normal urothelial cells. Canonical Notch pathway activity in reporter assays was repressed in UC cell lines compared to normal cells and a mammary carcinoma cell line, but was induced by transfected NOTCH1. Inhibitors of Notch signalling acting at the γ-secretase step did not affect UC cell proliferation at concentrations efficacious against a cell line with known Notch activity. Surprisingly, overexpression of NOTCH1 into UC cell lines did not significantly affect short-term cell proliferation, but induced nuclear abnormalities and diminished clonogenicity. CONCLUSION: Our data indicate that canonical Notch signalling is suppressed in urothelial carcinoma mainly through downregulation of NOTCH1. These findings can be explained by proposing that canonical Notch signalling may promote differentiation in the urothelium, like in many squamous epithelia, and its suppression may therefore be advantageous for tumour progression. As an important corollary, inhibition of canonical Notch signalling is unlikely to be efficacious and might be counter-productive in the treatment of urothelial carcinoma.


Subject(s)
Carcinoma/metabolism , Receptors, Notch/metabolism , Signal Transduction , Urinary Bladder Neoplasms/metabolism , Aged , Aged, 80 and over , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Carcinoma/genetics , Carcinoma/pathology , Cell Line, Tumor , Cell Proliferation , Female , Gene Expression , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Ligands , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Middle Aged , Protein Transport , Receptor, Notch1/genetics , Receptor, Notch1/metabolism , Receptors, Notch/genetics , Serrate-Jagged Proteins , Tumor Stem Cell Assay , Urinary Bladder/metabolism , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology
9.
Clin Epigenetics ; 6(1): 29, 2014.
Article in English | MEDLINE | ID: mdl-25741387

ABSTRACT

BACKGROUND: The two oppositely imprinted and expressed genes, DLK1 and MEG3, are located in the same gene cluster at 14q32. Previous studies in bladder cancer have suggested that tumor suppressor genes are located in this region, but these have not been identified. RESULTS: We observed that both DLK1 and MEG3 are frequently silenced in urothelial cancer tissues and cell lines. The concomitant downregulation of the two genes is difficult to explain by known mechanisms for inactivating imprinted genes, namely deletion of active alleles or epitype switching. Indeed, quantitative PCR revealed more frequent copy number gains than losses in the gene cluster that were, moreover, consistent within each sample, excluding gene losses as the cause of downregulation. Instead, we observed distinctive epigenetic alterations at the three regions controlling DLK1 and MEG3 expression, namely the DLK1 promoter; the intergenic (IG) and MEG3 differentially methylated regions (DMRs). Bisulfite sequencing and pyrosequencing revealed novel patterns of DNA methylation in tumor cells, which were distinct from that of either paternal allele. Furthermore, chromatin immunoprecipitation demonstrated loss of active and gain of repressive histone modifications at all regulatory sequences. CONCLUSIONS: Our data support the idea that the main cause of the prevalent downregulation of DLK1 and MEG3 in urothelial carcinoma is epigenetic silencing across the 14q32 imprinted gene cluster, resulting in the unusual concomitant inactivation of oppositely expressed and imprinted genes.

SELECTION OF CITATIONS
SEARCH DETAIL
...